2020 Fiscal Year Final Research Report
Various problems in arithmetic geometry concerning arithmetic fundamental groups and their interrelationships
Project/Area Number |
15H03609
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
Tamagawa Akio 京都大学, 数理解析研究所, 教授 (00243105)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 代数曲線 / 被覆 / 基本群 / ガロア表現 / アーベル多様体 / 正標数 / 国際研究者交流 |
Outline of Final Research Achievements |
As the original research plans, I invited each of my three overseas collaborators -- Christopher Rasmussen, Anna Cadoret and Mohamed Saidi -- almost every year during the period, by means of the present kakenhi grant and other financial sources, and made sufficient research achievements on arithmetic geometry concerning arithmetic fundamental groups. During the period, I published three joint papers with Rasmussen and had one more in preparation; published four joint papers with Cadoret, submitted one more and had four more in preparation; and published four joint papers with Saidi, submitted one more and had three more in preparation.
|
Free Research Field |
整数論・数論幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、代数多様体の数論的基本群の群論的及び数論幾何学的構造を解明する、というのが究極の目的であり、そのために、6つの具体的重要問題とその相互関係の究明を目指して研究を行った。3名の海外研究協力者(Christopher Rasmussen、Anna Cadoret、Mohamed Saidi)との3つの共同研究を中核として、これら6つの問題全てに対して多数の重要な知見を得て、研究期間中に計13編の論文を発表、さらに投稿中・準備中の論文も10編以上ある。これらの研究成果を通じて、当該研究分野の進展に大きく貢献できたのとともに、国際研究ネットワークを持続発展させることができた。
|