2019 Fiscal Year Final Research Report
Asymptotic profile of solutions for some partial differential equations with dissipative structure and its application
Project/Area Number |
15K04958
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical analysis
|
Research Institution | Hiroshima University |
Principal Investigator |
Ikehata Ryo 広島大学, 教育学研究科, 教授 (10249758)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 波動方程式 / 消散項 / 漸近形 / エネルギー / 減衰構造 / Fourier解析 / 最適評価 / 非有界領域 |
Outline of Final Research Achievements |
In these researches we studied asymptotiic profiles and optimal estimates in time of solutions (as time goes to infinity) to wave and/or plate equations with various damping mechanisms. The optimality implies the lower and upper bound of solutions with respect to time variable. In particular, it should be emphasized that the obtained lower bound in time of solutions is quite new in this type of wave equation field. Furthermore, by considering the exterior mixed problems for wave equations with/without damping mechanisms we investigated the total and/or local energy decay property, and especially in the case of nonlinear problems with power type nonlinearity of the corresponding problems for damped waves we determined the so-called critical exponent in the two dimensional case. Additionally, we remarked that the rate of decay of the local energy is much faster than those already known facts to the wave equation with non-smooth propagation speed.
|
Free Research Field |
函数方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
波動方程式等に摩擦項を加えて初期値問題を考察し、対応する解の漸近挙動がどうなるか、という問題はこの分野の基本的問題の一つである。しかし、実態はその漸近形自身が必ずしも定義されて一意的に決まるわけでもないので、巷にはいろんな型の漸近形解析なるものが溢れている。そこでその得られた漸近形がどの程度確からしいものかを試すテストの一つが上と下からの最適時間評価の導出にあるといえる。「雑に」漸近形を抉ると「下からの評価」を導出できない場合が多いように思う。我々の研究成果ではこのタイプの方程式について「それらしい」漸近形を抉り出し上と下からの最適な時間評価まで導出したことは学術的意義の一つである。
|