• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Research on singularities on an algebraic variety

Research Project

  • PDF
Project/Area Number 16K05089
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo (2018)
Tokyo Woman's Christian University (2016-2017)

Principal Investigator

Ishii Shihoko  東京大学, 大学院数理科学研究科, 名誉教授 (60202933)

Research Collaborator Watanabe Kei-ichi  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywordssingularities / arc space / minimal log discrepancy
Outline of Final Research Achievements

A non-smooth point on a variety is called a singularity. In order to study those singularities, we need good invariants. In this research, we introduce an invariant; Mather-Jacobian log discrepancy and study the properties of this invariant.
This invariant is interpreted in terms of the arc space on singularities of a variety. Therefore, making use of it, we obtain Inversion of Adjunction for the base field of positive characteristic and finite determinacy for
the M-J log discrepancy for surfaces of characteristic 0.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

多様体が滑らかであれば,コホモロジーの消滅定理をはじめとして,色々な良い性質が成立し,多様体全体の様相がわかりやすいのであるが,特異点があるとそれがわかりにくくなる.特異点をよく知ることで,多様体の理解を深めようというのが本研究の意義である.この研究は数学的に意義があることはもちろん,特異点の不変数の一つである log canonical threshold が学習理論において,重要な役割を果たすことが知られていることからもわかるように,社会にとっても意義のあることである.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi