2022 Fiscal Year Final Research Report
Analysis of the surfaces and interfaces of strongly correlated oxide based on the international platform of next-generation synchrotron light(Fostering Joint International Research)
Project/Area Number |
16KK0107
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | Tohoku University (2022) High Energy Accelerator Research Organization (2016-2017) |
Principal Investigator |
|
Project Period (FY) |
2017 – 2022
|
Keywords | 量子井戸構造 / 角度分解光電子分光 / 酸化物ヘテロ構造 / 放射光 / バンド構造 / 酸化物薄膜 / 酸化物エレクトロニクス / 機能性ナノ構造 |
Outline of Final Research Achievements |
The quantum confinement of strongly correlated electrons in artificial structures has heralded the possibility of tailoring the extraordinary physical properties of strongly correlated oxides, such as orbital selective quantization and the giant Rashba effect. This research project aimed to design novel physical properties that appear at the quantum-well structures of strongly correlated oxides under the scheme of international collaborative research among the Japanese, German group (University of Wurzburg and synchrotron facilities at Europe), and French group (Paris-Sud University and Synchrotron SOLEIL). Specifically, by combining the state-of-the-art synchrotron-radiation spectroscopic analysis in Europe with the world-leading fabrication techniques of oxide nanostructures and oxide devices in Japan, we explored the functions of novel two-dimensional electron liquid states induced in oxide quantum-well structures and designed these structures based on these results.
|
Free Research Field |
酸化物表面・界面物性
|
Academic Significance and Societal Importance of the Research Achievements |
欧州の次世代放射光施設における最先端放射光解析技術と物質設計を組み合わせた本研究により、酸化物量子井戸構造で発現する低次元電子液体の機能を用いた物質・デバイス設計に明確な指針を与えることができたと考えられる。また、本研究を通した欧州の放射光施設での研究交流を通じて、国内の次世代放射光施設であるナノテラスへの最先端放射光解析技術の導入を図った。世界最先端の放射光計測・解析を実現する技術とノウハウを獲得することで、次世代放射光が稼働し始めると同時にシームレスに研究を展開することが可能になり、酸化物デバイス研究のみならず、将来的により広範囲の物質開発に大きく貢献できるものと考えられる。
|