• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

A quasi-triangular structure in Kashiwara-Miwa model

Research Project

Project/Area Number 17540204
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionRikkyo University

Principal Investigator

YAMADA Yuji  Rikkyo University, Dep. of math., lecturer (40287917)

Co-Investigator(Kenkyū-buntansha) SHIRAISHI Junichi  Univ. of Tokyo, Graduate school of math., Sciences associate professor (20272536)
KAKEI Saboro  Rikkyo Univ., Dep. of math., associate professor (60318798)
Project Period (FY) 2005 – 2007
KeywordsYang-Baxter equation / reflection equation / quasi-triangular Hopf algebra
Research Abstract

We study the classification of the solutions to the reflection equation for Cremmer-Gervais R-matrix in N=3 case. The R-matrix of Cremmer-Gervais type is obtained from Uq(sl_N) through the theory of quasi-triangular Hopf algebras of Drinfeld as solutions to the Yang-Baxter equation. There are only two types of the R-matrices which are obatained through the theory of quasi-triangular Hopf algebras. One is the series of Belavin' s R-matrices, and the other is the series of Cremmer-Gervais type. The algebraic structures of the solutions to the reflection equations are not well understood. We have only two cases in which all solutions to the reflection equation are known, (1) N=2 Belavin' s elliptic R-matrix (eight-vertex case), and (2) N=3 trigonomerically degenerated Belavin' s R-matix case. In order to understand the algebraic structure in solutions to the reflection equation, we study the case of N=3 Cremmer-Gervais R-matix case (with Kohei MOTEGI). The N=2 Cremmer-Gervais R-matrix is only the degenerated N=2 Belavin' s elliptic R-matrix.
The solution space of the reflection equation to the N=3 Cremmer-Gervais R-matrix obtained through this study is described by the rational surface in projective spaces. In the case of the N=3 trigonometric R-matrix, the parameter space of the solution of the reflection equation is the Segre three-fols in $P^5(C)$. In our case there appeared two parameters spaces. One is the same Segre three-fold. But the other new parameter space is embedded in the projective space$P^10$.

  • Research Products

    (7 results)

All 2008 2007 2006

All Journal Article (5 results) (of which Peer Reviewed: 3 results) Presentation (2 results)

  • [Journal Article] The sixth Painleve equation as similarity reduction of gl_3 hierarchy2007

    • Author(s)
      KAKEI, Saburo, KIKUCHI, Tetsuya
    • Journal Title

      Letters in Mathematical Physics 79(3)

      Pages: 221-234

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] KIKUCHI, Tetsuya, The sixth Painleve equationas similarity reduction of gl_3 hierarchy2007

    • Author(s)
      KAKEI, Saburo
    • Journal Title

      Letters in Mathematical Physics 79(3)

      Pages: 221-234

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Sugawara and vertex operator constructions for deformed Virasoro algebras.2006

    • Author(s)
      Arnaudon, Daniel, Avan, Jean, Frappat, Luc, Ragoucy, Eric, Shiraishi, Junichi
    • Journal Title

      Ann. Henri Poincare 7

      Pages: 1327-1349

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] A family of integral transformations and basic hypergeometric series2006

    • Author(s)
      Shiraishi, Jun'ichi
    • Journal Title

      Comm. Math. Phys. 263, no. 2

      Pages: 439-460

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Sugawara and vertex operator constructions for deformed Virasoro algebras2006

    • Author(s)
      Arnaudon, Daniel, Avan, Jean, Frappat, Luc, Ragoucy, Eric, Shiraishi, Junichi
    • Journal Title

      Ann. Henri Poincare vol 7

      Pages: 1327-1349

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] NLS-ASDYM階層とパンルヴェ方程式2008

    • Author(s)
      筧 三郎, 菊地 哲也
    • Organizer
      日本数学会
    • Place of Presentation
      近畿大学
    • Year and Date
      2008-03-23
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] The hierarchy of NLS-ASDYM and the painleve equations2008

    • Author(s)
      KAKEI, Saburo, KIKUCHI, Tetsuya
    • Organizer
      Nihon suugaku kai
    • Place of Presentation
      Kinki Univ
    • Year and Date
      2008-03-03
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2010-06-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi