• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Study of higher matrix factorizations categories

Research Project

  • PDF
Project/Area Number 17H06783
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Hirano Yuki  京都大学, 理学研究科, 助教 (50804225)

Research Collaborator Ouchi Genki  
Project Period (FY) 2017-08-25 – 2019-03-31
Keywords行列因子化 / 可逆多項式
Outline of Final Research Achievements

This is a joint work with Ouchi. We prove that the category of graded matrix factorizations of non-Thom--Sebastiani-type sum of certain polynomials has a semi-orthogonal decomposition, and as an application, we partially resolve a conjecture that is implied by categorical mirror symmetry conjecture between an invertible polynomial and its transpose. More precisely, we show that the category of maximally graded matrix factorizations of invertible polynomials of chain type has a full exceptional collection whose length equals to the Milnor number of its transpose.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

これまでは共通の変数を共有しないような2つの多項式の和で表される多項式の行列因子化の圏に関する結果しか知られていなかったが、本研究により変数を共有するような多項式の和で表されるような多項式の場合にも、その行列因子化の圏が良い分解を持つことが分かった。またその応用として得た鎖型の可逆多項式の行列因子化の圏が充満例外生成列を持つという結果は、これまで3変数以下の場合までしか知られていなかったものであり、圏論的ミラー対称性予想を支持するための新たな根拠を与えるものである。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi