• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Construction of CMC tori by infinite times Bianchi-Baecklund transformations

Research Project

  • PDF
Project/Area Number 17H07321
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionOkinawa National College of Technology

Principal Investigator

Ogata Yuta  沖縄工業高等専門学校, 総合科学科, 講師 (50800801)

Research Collaborator Cho Joseph  
Project Period (FY) 2017-08-25 – 2019-03-31
Keywords平均曲率一定曲面 / 変換理論 / 可積分系
Outline of Final Research Achievements

(1) We have defined a special Bianchi-Baecklund transformation via loop group methods and constructed new examples of CMC surfaces. We have also shown a method to construct positon-like solutions which have some different properties from the famous soliton solutions for the sinh-Gordon equation.
(2) We have proved the equivalence between the classical Bianchi-Baecklund transformations and simple factor dressings directly, using a different method from previous studies. As a result, we have shown the relationship between parameters of positon-like solutions for the sinh-Gordon equation and the extended fames for positon-like CMC surfaces.

Free Research Field

微分幾何学

Academic Significance and Societal Importance of the Research Achievements

本研究に用いている「Bianchi-Baecklund変換」は、幾何学的側面だけでなく、可積分系理論においても有名な変換であり、「ソリトン解」と呼ばれるsinh-Gordon方程式の解を与えることが既に知られている。本研究により、「ポジトン型解」と呼ばれるsinh-Gordon方程式の別の重要な解を構成し、その解析を行った。本研究は、幾何学的に興味深い曲面の構成理論を研究しているだけでなく、可積分系理論の応用例という点で学術的貢献を与えるものである。

URL: 

Published: 2020-03-30   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi