• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Annual Research Report

双曲コクセター多面体の実現可能性と増大度

Research Project

Project/Area Number 17J05206
Research InstitutionWaseda University

Principal Investigator

雪田 友成  早稲田大学, 教育・総合科学学術院, 特別研究員(DC2)

Project Period (FY) 2017-04-26 – 2019-03-31
Keywords双曲多面体 / コクセター群 / 増大度 / Perron数
Outline of Annual Research Achievements

双曲コクセター多面体とは、双曲空間内の凸多面体であり、その面に関する鏡映が離散等長変換群を生成するものである。n次元多面体の組み合わせ構造を固定したとき、いつ双曲空間内にコクセター多面体として実現可能かどうかというのは基本的であるがその様子は2,3次元と4次元以上とで大きく様相が異なる。また双曲コクセター多面体の面に関する鏡映が生成する離散鏡映群の語の長さに関する増大度は1より真に大きい実代数的整数となるが、それが実際にどのような実代数的整数となるかもまた興味深い。本年度は主に次の2つの研究を行った。
(1)4次元双曲コクセター多面体の実現問題:2,3次元においては双曲コクセター多面体の実現可能条件は、その面角が満たす不等式として完全に決定されている。したがって、実現問題を考えることは4次元以上で意味を持つ。申請者は非コンパクトな4次元双曲コクセター多面体の実現問題の研究を行った。結果として双曲コクセターピラミッドの貼りあわせを考えることで、非コンパクト双曲コクセター多面体の無限系列の最初の例を構成することができた。
(2) 増大度の数論的性質について:双曲コクセター多面体の増大度についても2,3次元の場合にはSalem数、Pisot数、Perron数が現れることが示されているが、4次元以上の場合には散在的に知られているのみである。その原因は4次元以上の双曲コクセター多面体の増大度関数の次数が非常に高くなり式が複雑になることと、実現するための条件が決定されていないことにある。そこでまず(1)で構成できていた無限系列に対してその増大度の数論的性質を調べた。結果として(1)の無限系列の増大度はPerron数であることを得た。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

非コンパクト双曲理想コクセター多面体の無限系列を構成し、増大度を明らかにすることで、4次元双曲コクセター群の増大度の計算を進められたため。

Strategy for Future Research Activity

本年度の研究において、増大度がPerron数である非単純双曲理想コクセター多面体の無限系列を構成することが出来た。
この結果を受けて、増大度がPerron数であるような単純双曲理想コクセター多面体を構成することに興味がある。
そこで、VInbergによる双曲コクセター多面体のグラム行列を用いた特徴付けにより、4次元双曲コクセター多面体の構成から行う。
それと別に今までに増大度の計算がされていない、双曲コクセター多面体の増大度を明らかにすることも行う。

  • Research Products

    (8 results)

All 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (6 results)

  • [Journal Article] On the growth rates of cofinite 3-dimensional hyperbolic Coxeter groups whose dihedral angles are of the form $\frac{\pi}{m}$ for $m=2,3,4,5,6$2017

    • Author(s)
      Tomoshige Yukita
    • Journal Title

      RIMS 講究録別冊

      Volume: B66 Pages: 147~165

    • Peer Reviewed
  • [Journal Article] Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers2017

    • Author(s)
      Yukita Tomoshige
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 61 Pages: 405~422

    • DOI

      http://dx.doi.org/10.4153/CMB-2017-052-5

    • Peer Reviewed
  • [Presentation] 4次元双曲理想コクセター多面体の無限系列の構成について2018

    • Author(s)
      雪田 友成
    • Organizer
      第一回数理新人セミナー
  • [Presentation] 4次元双曲理想コクセター多面体の構成と増大度2018

    • Author(s)
      雪田 友成
    • Organizer
      第14回数学総合若手研究集会
  • [Presentation] 増大度がPerron数の4次元双曲理想コクセター多面体の無限系列の構成2018

    • Author(s)
      雪田 友成
    • Organizer
      日本数学会 2018年度年会
  • [Presentation] 双曲コクセター多面体の増大度の数論的性質について2017

    • Author(s)
      雪田 友成
    • Organizer
      早稲田大学双曲幾何幾何学的群論セミナー
  • [Presentation] 4次元双曲理想コクセター多面体の無限系列とその増大度について2017

    • Author(s)
      雪田 友成
    • Organizer
      東工大複素解析セミナー
  • [Presentation] 双曲コクセター多面体の増大度について2017

    • Author(s)
      雪田 友成
    • Organizer
      大阪市立大院生談話会

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi