2021 Fiscal Year Final Research Report
Learning from biological defense mechanisms of neutrophils: creation of nanoimmune devices for novel cancer therapy.
Project/Area Number |
18H01845
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28050:Nano/micro-systems-related
|
Research Institution | Shinshu University (2020-2021) Kyoto University (2018-2019) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 高分子ベシクル |
Outline of Final Research Achievements |
Conventional drug delivery systems deliver drug-encapsulated particles to a disease site. However, side effects and decreased efficacy associated with drug leakage from the carriers are a problem. Therefore, new therapeutic strategies that are safe and highly therapeutic efficacy are required. This research was conducted with the aim of creating nanodevices that synthesize drugs locally without the need for anticancer drugs or other drugs. As the result, the following were clarified: Development of the polymer vesicle which shows the molecular permeability under specific biological environment, elucidation of the molecular permeation mechanism, molecular design guideline necessary for the molecular permeation, etc.. Furthermore, it has been found that a polymeric vesicle device encapsulating an enzyme can function and kill cancer cells even under a cell culture environment.
|
Free Research Field |
自己組織化高分子
|
Academic Significance and Societal Importance of the Research Achievements |
従来型DDS製剤においては、薬の漏出により、薬効の低減や副作用が問題となっている。治療効果を高めつつ、QOLの向上も可能な次世代型ナノ医療の進展が急務となっている。そのような医療においては、従来のナノ粒子とは異なる機能性粒子の開発が必要不可欠である。本研究の実現により、細胞環境下で分子透過性を示す高分子ベシクルやその透過機構・分子設計指針が確立できた。加えて、in vitroでがん細胞の死滅も実証した。今後、in vivoで本システムの有用性を実証することにより、より安全かつ治療効果の高いナノ医療に結びつくものと考えられる。
|