• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2009 Fiscal Year Final Research Report

Study of stability properties for positive linear equations with delay and related topics

Research Project

  • PDF
Project/Area Number 19540203
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOkayama University of Science

Principal Investigator

MURAKAMI Satoru  Okayama University of Science, 理学部, 教授 (40123963)

Co-Investigator(Kenkyū-buntansha) KAMIYA Shigeyasu  岡山理科大学, 工学部, 教授 (80122381)
HAMAYA Yoshihiro  岡山理科大学, 総合情報学部, 教授 (40228549)
NAGABUCHI Yutaka  岡山理科大学, 理学部, 教授 (60252607)
TANAKA Satoshi  岡山理科大学, 理学部, 准教授 (90331959)
SHIMENO Nobukazu  岡山理科大学, 理学部, 准教授 (60254140)
Project Period (FY) 2007 – 2009
Keywords関数方程式 / 関数微分方程式 / 正の方程式 / 安定性 / 漸近挙動
Research Abstract

We studied qualitative properties of solutions in functional differential equations, integrodifferential equations and Volterra difference equations which are typical ones of equations with delay. Applying the variation-of-constants formula in the phase space for functional differential equations, we obtained a result on the behavior of solutions for equations with a perturbation. Also, we established a result on the existence of several invariant manifolds for nonlinear functional differential equations. Furthermore, treating integrodifferential equations mainly, we investigated the positivity of equations, and obtained a criterion on stabilities for positive equations.

  • Research Products

    (11 results)

All 2009 2008 2007

All Journal Article (10 results) (of which Peer Reviewed: 9 results) Presentation (1 results)

  • [Journal Article] On positive linear Volterra-Stieltjes differential systems2009

    • Author(s)
      P.H.A. Pham, S. Murakami, T. Naito, J.S. Shin, Y. Nagabuchi
    • Journal Title

      Integral Equations and Operator Theory Vol.64

      Pages: 325-355

    • Peer Reviewed
  • [Journal Article] Stability and robust stability of positive linear Volterra difference equations2009

    • Author(s)
      P.H.A. Pham, T. Naito, J.S. Shin, S. Murakami
    • Journal Title

      Intern. J. Robust and Nonlinear Control Vol.19

      Pages: 552-568

    • Peer Reviewed
  • [Journal Article] Stabilities with respect to a weight function in Volterra difference equations2009

    • Author(s)
      S. Murakami
    • Journal Title

      Advanced Studies in Pure Math. Vol.53

      Pages: 189-197

    • Peer Reviewed
  • [Journal Article] On stability and robust stability of positive linear Volterra equations2008

    • Author(s)
      P.H.A. Pham, T. Naito, J.S. Shin, S. Murakami
    • Journal Title

      SIAM J. Control Optimization Vol.47

      Pages: 975-996

    • Peer Reviewed
  • [Journal Article] Positivity and stability of linear Volterra integro-differential equations in a Banach lattice2008

    • Author(s)
      S. Murakami, P.H.A. Pham
    • Journal Title

      RIMS Kokyuroku Vol.41582

      Pages: 23-32

  • [Journal Article] Perron type theorems for functional differetial equations with infinite delay in a Banach space2008

    • Author(s)
      K. Matsui, H. Matsunaga, S. Murakami
    • Journal Title

      Nonlinear Anal. Vol.69

      Pages: 3821-3837

    • Peer Reviewed
  • [Journal Article] Uniform asymptotic stability and robust stability for positive linear Volterra difference equations in Banach lattices2008

    • Author(s)
      S. Murakami, Y. Nagabuchi
    • Journal Title

      Advances in Difference Equations Vol.2008

      Pages: 1-15

    • Peer Reviewed
  • [Journal Article] Characterization of positive linear integro-differential systems2007

    • Author(s)
      T. Naito, S. Murakami, J.S. Shin, P.H.A. Pham
    • Journal Title

      Integral Equations and Operator Theory Vol.58

      Pages: 255-272

    • Peer Reviewed
  • [Journal Article] Characterization of linear integral equations with nonnegative kernels2007

    • Author(s)
      T. Naito, J.S. Shin, S. Murakami, P.H.A. Ngoc
    • Journal Title

      J. Math. Anal. Appl. Vol.335

      Pages: 298-313

    • Peer Reviewed
  • [Journal Article] Invariant manifolds for abstract functional differential equations and related Volterra difference equations2007

    • Author(s)
      S. Murakami, Y. Nagabuchi
    • Journal Title

      Funkcial. Ekvac. Vol.50

      Pages: 133-170

    • Peer Reviewed
  • [Presentation] Positivity and stability of linear Volterra integro-differential equations in a Banach lattice2007

    • Author(s)
      S. Murakami
    • Organizer
      研究集会「関数方程式論におけるモデリングと複素解析」
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2007-11-05

URL: 

Published: 2011-06-18   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi