• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Basic research on the construction of a database of diversity lung nodules and the development of a self-learning diagnostic imaging support system

Research Project

  • PDF
Project/Area Number 19H03599
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionGifu University

Principal Investigator

Fujita Hiroshi  岐阜大学, 工学部, 特任教授・名誉教授 (10124033)

Co-Investigator(Kenkyū-buntansha) 西尾 瑞穂  神戸大学, 医学部附属病院, 特定助教 (50581998)
村松 千左子  滋賀大学, データサイエンス学部, 准教授 (80509422)
八上 全弘  京都大学, 医学研究科, 特定講師 (70580108)
坂本 亮  京都大学, 医学研究科, 特定助教 (50741930)
富樫 かおり  京都大学, 医学研究科, 教授 (90135484)
Project Period (FY) 2019-04-01 – 2022-03-31
Keywords計算機支援画像診断 / 深層学習 / 画像データベース / 胸部CT画像 / 導入後学習 / 胸部画像 / 自己学習
Outline of Final Research Achievements

As basic research on the construction of a computer-assisted image diagnosis (so-called AI-CAD) system equipped with AI, a solution to the lack of medical image data necessary for learning to obtain a deep learning (deep learning) type AI model with high accuracy. Basic research on (1) research on the possibility of generating three-dimensional CT images of lung nodules, (2) research on the effectiveness of research results, (3) research on pursuit of realism, and (4) continuous learning (post-marketing learning) was mainly carried out. As a result, it was shown that it is possible to form a realistic lung nodule image that is effective in a certain range based on the Generative Adversarial Networks (GAN technique). In addition, new findings were obtained by simulation study for the three update methods for continuous learning.

Free Research Field

医用画像情報学

Academic Significance and Societal Importance of the Research Achievements

医用画像診断を目的としたディープラーニング搭載の最新のコンピュータ支援診断(いわゆるAI-CAD)システムの構築に対して,モデル学習時に最も障害となる医療画像データ不足があり,これはAI-CADシステムの精度向上を阻む一要因である.本研究で開発した画像生成技術によってそれを補うことにより,システムの精度向上の一躍を担う可能性が示され,さらに継続学習に対して得られた新たな成果により,本研究領域において学術的にはもちろん,すでに実用化が始まりつつあるシステムの性能向上に向けても,本知見は少なからず寄与できるであろう.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi