2023 Fiscal Year Final Research Report
Invariants of low dimensional manifolds from infinite dimensional dynamics in gauge theory and homotopy theory
Project/Area Number |
19K03493
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | Seiberg-Witten理論 / Floer理論 |
Outline of Final Research Achievements |
I studied the Seiberg-Witten Floer stable homotopy type which is an invariant of closed 3-manifolds. The invariant had been defined only for 3-manifolds with first Betti number zero and computed only for a few types of Seifert fibered spaces. I have studied to extend the invariant to a class of 3-manifolds and to establish a way to compute for more 3-manifolds.
|
Free Research Field |
幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
シンプレクティック幾何学や結び目理論などに関するFloer理論では、ホモロジー的不変量からホモトピー的不変量への精密化が盛んに研究され、成果が出つつある。本研究ではSeiberg-Witten Floer理論において、その研究の流れを進めることができた。
|