• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Machine Learning with Small Data

Research Project

  • PDF
Project/Area Number 19K22863
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 61:Human informatics and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Yamasaki Toshihiko  東京大学, 大学院情報理工学系研究科, 准教授 (70376599)

Project Period (FY) 2019-06-28 – 2022-03-31
Keywords少量学習データ / ドメイン適応 / 弱教師付き学習 / 半教師付き学習 / Few -Shot学習 / Zero-Shot学習
Outline of Final Research Achievements

Deep learning is known for its overwhelming performance, but such high performance can be achieved only when large amounts of correct data are available. On the other hand, the time and financial cost for acquiring and creating such data is a severe problem. While rich data sets are available in fields where research has already been conducted for a long time, such as object recognition, large-scale datasets cannot be expected for industries or medical fields. In order to solve this problem, we have achieved various elemental technologies such as domain adaptation, weak/semi-supervised learning, few/zero-shot learning, self-supervised learning, and unbalanced learning that enable us to obtain robust machine learning models even with small and biased datasets.

Free Research Field

マルチメディア、コンピュータビジョン

Academic Significance and Societal Importance of the Research Achievements

前述の通り、深層学習アルゴリズムがその性能を十分に発揮するためには、大規模かつ性格なラベリングがなされた学習データが必要であった。産業応用を考えた場合、新たに大量のデータを収集し、かつそのデータに正解ラベルを付与するコストはあまりにも高い。本研究成果はこの制約を緩和し、少量であったり極端にデータの分布に偏りがあったりしても正しく学習がなされる種々の要素技術を実現したことにある。我々の技術はすでにいくつかは実サービスに応用されており、社会的にも貢献している。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi