• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Research-status Report

円の自己同相写像の成す有限生成群の剛性について

Research Project

Project/Area Number 19K23406
Research InstitutionEhime University

Principal Investigator

加藤 本子  愛媛大学, 理工学研究科(理学系), 特定助教 (00847593)

Project Period (FY) 2019-08-30 – 2022-03-31
KeywordsThompson群 / 固定点性質 / CAT(0)空間 / 円の自己同相群
Outline of Annual Research Achievements

本研究では、幾何学的群論の手法を用いて、単位円の向きを保つ自己同相写像の成す群の有限生成無限部分群の構造を調べている。 特に、Thompson群と呼ばれる有限表示無限単純群とその一般化に注目して、非正曲率距離空間への群作用の固定点性質を研究している。Thompson群とその一般化が, どのような空間上の群作用について固定点性質を持つか」という問題は, Thompson群の従順性とも関連する重要な問題である。本年度はKim-Koberda-Lodhaの構成した向きを保つ自己同相写像の成す有限生成群のクラスに注目し、それらの群が非正曲率距離空間への群作用の固定点性質を持つことを示した。先行研究により,「Thompson群Vとその一般化は有限次元CAT(0)空間への群作用について固定点性質を持つ」ということが知られていた。本年度の研究では, この結果をThompson群Tの場合にも一般化し、円の自己同相群の成すある種の有限生成群が有限次元CAT(0)空間への群作用について固定点性質を持つことを証明した。具体的には、これらの群が有限生成CAT(0)空間に半単純作用を持つとき、これらの群の交換子部分群の有限生成部分群が大域的な固定点を持つことを示した。このことより、「Higman-Thompson群が有限次元のCAT(0)空間への作用に対して固定点性質を持つ」という系が従う。この結果を論文にまとめ、プレプリントサーバーarXivで公開した。また、2021年3月に行われた研究集会「Thompson群とその周辺」にて研究発表を行った。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

単位円の向きを保つ自己同相写像の成す有限生成群の広いクラスが、Thompson群に類似した強い固定点性質を持つことが確かめられた。

Strategy for Future Research Activity

本年度は研究にある程度の進展があったものの、参加予定であった研究集会やセミナーの中止などにより情報収集や議論が予定通り進められなかった。今後の推進方策としては、オンラインセミナー等を利用して情報収集・議論を行いつつ、本年度の研究で着目した群のクラスが具体的にどのような群を含んでいるか、さらに強い固定点性質を持つものを含むかといった問題に注目し、研究をさらに発展させることを予定している。

Causes of Carryover

研究集会の中止や出張自粛要請により、予定していた出張が行えなかった等の理由によって、次年度使用額が生じた。今後の使用計画としては、国内・国外移動 が可能になった場合は国内・国外研究集会への出張を行い、情報収集や議論を行う。移動が難しい場合は機材やオンライン会議システムなどによるオンラインで の議論環境を整備し、オンライン研究集会を企画する。

  • Research Products

    (4 results)

All 2021 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Journal Article] Acylindrical hyperbolicity of Artin-Tits groups associated to triangle-free graphs and cones over square-free bipartite graphs2020

    • Author(s)
      Motoko Kato, Shin-ichi Oguni
    • Journal Title

      Glasgow Mathematical Journal

      Volume: Published Online Pages: 1-14

    • DOI

      10.1017/S0017089520000555

    • Peer Reviewed / Open Access
  • [Presentation] On acylindrical hyperbolicity of some Artin groups2021

    • Author(s)
      加藤本子
    • Organizer
      Quantum Math, Singularities and Applications
    • Int'l Joint Research / Invited
  • [Presentation] On ring groups of homeomorphisms of the circle2021

    • Author(s)
      加藤本子
    • Organizer
      Thompson群とその周辺
    • Invited
  • [Presentation] On acylindrical hyperbolicity of some Artin groups2020

    • Author(s)
      加藤本子
    • Organizer
      2020年度日本数学会秋季総合分科会

URL: 

Published: 2021-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi