2010 Fiscal Year Final Research Report
A global study of the moduli spaces of abelian varieties over the ring of integers
Project/Area Number |
20340001
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hokkaido University |
Principal Investigator |
NAKAMUR Iku Hokkaido University, 大学院・理学研究院, 教授 (50022687)
|
Co-Investigator(Renkei-kenkyūsha) |
KATSURADA Hidenori 室蘭工業大学, 大学院・工学研究科, 教授 (80133792)
WENG Lin 九州大学, 大学院・数理学研究院, 教授 (60304002)
|
Project Period (FY) |
2008 – 2010
|
Keywords | モジュライ / アーベル多様体 / コンパクト化 / 安定性 / マッカイ対応 / 単純特異点 / 既約表現 / ディンキン図形 |
Research Abstract |
We proved the following in the theory of moduli of abelian varieties : Theorem : There is another canonical compactification SQ^<toric>_<g,k> of the moduli of abelian varieties different from SQ_<g,k> constructed by us in 1999. Moreover there is a canonical bijectivebirationalmorphism from SQ^<toric>_<g,k> onto SQ_<g,k> which induces the isomorphism of their normalizations. There was also a progress in sharpening the 2-dimensional McKay correspondence, which explains the connection with the extended Dynkin diagram.
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Remarks] 2010.5.31-6.4, Nakamura, Iku: "Moduli of elliptic curves", 集中講義,埼玉大学理工学部
-
[Remarks] 2009.9.3, Nakamura, Iku : "McKay correspondence", Seminar on Calalbi-Yau, Queen's University, Canada
-
[Remarks] 2008.11.21, Nakamura, Iku : "Acanonical morphism from SQ^<torio>_<g,k> to SQ_<g,k>", Kyoto University
-
[Remarks] 2008.9.11 and 18, Nakamura, Iku : "Compactification of moduli of abelian varieties", Seminar on Calalbi-Yau, Queen's University, Canada
-
[Remarks] 2008.9.5, Nakamura, Iku : "Stability and compactification of moduli of abelian varieties",the Centre de recherches mathematiques, Montereal University
-