• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of visual feedback speech training method based on real-time audio visualization system in cleft palate

Research Project

  • PDF
Project/Area Number 20H03891
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 57060:Surgical dentistry-related
Research InstitutionKagoshima University

Principal Investigator

Nakamura Norifumi  鹿児島大学, 医歯学域歯学系, 教授 (60217875)

Co-Investigator(Kenkyū-buntansha) 石畑 清秀  鹿児島大学, 医歯学域鹿児島大学病院, 講師 (10437957)
手塚 征宏  鹿児島大学, 医歯学域歯学系, 助教 (50759777)
小倉 道広  鹿児島大学, 鹿児島大学病院, 言語聴覚士 (60867745)
上栗 裕平  鹿児島大学, 鹿児島大学病院, 医員 (70911949)
坂田 聡  熊本大学, 大学院先端科学研究部(工), 助教 (80336205)
上田 裕市  熊本大学, 大学院先端科学研究部(工), 教授 (00141961)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords口蓋裂 / ニューラルネットワーク / 異常構音 / 音声可視化 / 言語訓練
Outline of Final Research Achievements

This study aims to develop a speech training method that enables real-time speech visualization and visual feedback of abnormal articulation in cleft palate patients based on articulatory feature analysis using a novel neural network (NN) system.
The NN system was successfully able to visualize abnormal articulation in cleft palate patients. The results of these NN analyses correlated well with the perceptual judgments of several speech-language pathologists. In addition, we developed software that allows the examiner and examinee to confirm the articulation place and sound sources by drawing them in real time on a sagittal image of the face.
It can be concluded that the NN system is a useful tool for enabling visual feedback to the diagnosis and speech training in patients with cleft palate. In the future, the NN system will be used for clinical application of speech training methods that reflect behavioral changes.

Free Research Field

口腔顎顔面外科

Academic Significance and Societal Importance of the Research Achievements

口唇裂口蓋裂患者は多様な障害を有するが、中でも言語障害は、患者のコミュニケーションを招いて患者のQOLを著しく低下させる.口蓋裂患者が正常構音を早期に獲得するには、早期に鼻咽腔閉鎖運動や構音動作の異常を診断し、言語訓練を行うことが有効とある.
新規ニューラルネットワーク(NN)システムは、口蓋裂児の構音異常の診断ならびに言語訓練に視覚的フィードバックを可能にする有用なツールとなり得る.また、本NNシステムを用いて口蓋裂児の調音位置を詳細に観察できるようになることは、口蓋裂に伴う異常構音の発生メカニズムの解明を促進させ、発症要因にアプローチ可能なより科学的な言語訓練へと発展することが期待できる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi