2023 Fiscal Year Final Research Report
Geometry of arithmetic varieties and arithmetic positivity
Project/Area Number |
20K03548
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Shitennoji University |
Principal Investigator |
Ikoma Hideaki 四天王寺大学, 教育学部, 准教授 (90533638)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 代数幾何学 / アラケロフ幾何学 / 数論的多様体 / 数論的正値性 |
Outline of Final Research Achievements |
A central concern in Arakelov geometry is to study the number of small sections of an adelic line bundle. Arithmetic volume function is a birational invariant that counts the numbers of small sections of high powers of an adelic line bundle. The main purpose of this research is to establish in its most general form differentiability of the arithmetic volume function over the cone of big pairs of adelic Cartier divisors and Cartier divisors. In the first year, in a joint work with Huayi Chen, I proposed a construction of arithmetic Okounkov bodies for subfinite linear series. I wrote a book on Faltings's big theorem with Moriwaki and Kawaguchi. In the second year, I published papers on continuity of arithmetic volume function and on differentiability of arithmetic volume function along adelic Cartier divisors. I also published in an arXiv a manuscript on one-sided differentiability of arithmetic volume function at the boundary in special cases.
|
Free Research Field |
代数幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
代数多様体上の有理点の研究を行う上で、計量の付いた直線束のノルムの小さい大域切断を考えることが大変重要です。例えばこのような切断は、Faltingsの大定理の証明において、超越数論における補助関数の役割を果たしています。私はこのノルムの小さい切断に基底条件を課した上で、その存在や個数の問題を考えました。初年度に新型コロナウイルスが流行し、業務が多忙化したため、計画よりも予定が遅れてしまいましたが、当初の目的であった微分可能性について一般的な証明の方針を得ることはできました。またYuanとZhangによって開多様体上の同程度分布定理が示されたため、その関係についても鋭意研究を進めていきます。
|