• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT

Research Project

  • PDF
Project/Area Number 20K21899
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 90:Biomedical engineering and related fields
Research InstitutionThe University of Tokushima

Principal Investigator

MATSUMOTO Takeshi  徳島大学, 大学院社会産業理工学研究部(理工学域), 教授 (30249560)

Co-Investigator(Kenkyū-buntansha) 星野 真人  公益財団法人高輝度光科学研究センター, 分光推進室, 主幹研究員 (30508461)
Project Period (FY) 2020-07-30 – 2022-03-31
Keywordsダイナミック位相CT / 血管拍動下・全周囲観察 / 高密度分解能 / 放射光
Outline of Final Research Achievements

Grating-based X-ray phase-contrast CT (PCT) was applied for visualizing the entire circumferential structure of pulsating arteries. The experiment was done at SPring-8. A specimen of canine carotid artery was filled with saline and exposed to the pulsatile luminal pressure (0.5 Hz, 70-90 mmHg). The X-ray phase shift induced by the specimen was visible as a Moire pattern through a grating interferometer and detected by a fiber-coupled sCMOS camera. Phase retrieval was achieved by the phase-stepping procedure, which synchronized with the projection angle increment. Tomographic snapshots of the specimen were reconstructed with time and spatial resolution of 250 ms and 4.47 μm, respectively. The density resolution was 2.5 mg/cm3. Elastica van Gieson staining showed that the image contrast reflected the distribution of arterial wall components. The present PCT has the potential to promote a better understanding of structural dynamics of arterial walls.

Free Research Field

生理・生体工学

Academic Significance and Societal Importance of the Research Achievements

血管壁の局所的な力学的特性の異常は、血管初期病変の発生に関わるとともに、大動脈の解離や瘤の形成・破裂など、カタストロフィックな事象発生の起点にもなる。本研究で確立したX線位相差ダイナミックCTは密度分解能に優れ、拍動下において血管壁の局所的な変形を観察するための新奇な手法として、血管研究にイノベーションをもたらすものである。本法を血管壁の動的力学試験に応用し、数理シミュレーションとの統合を図れば、血管破綻に進展するマイクロダメージを予測するフレームワークの作成が可能となり、従来の「血管内圧-内外径」関係に基づく血管バイオメカニクスの知見を大きく向上させることが期待できる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi