• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Strategic Research to solve certain conjectures in Arithmetic Geometry

Research Project

  • PDF
Project/Area Number 21674001
Research Category

Grant-in-Aid for Young Scientists (S)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionKeio University

Principal Investigator

BANNAI Kenichi  慶應義塾大学, 理工学部, 准教授 (90343201)

Research Collaborator YAMAMOTO Shuji  慶應義塾大学, 理工学部, 特任助教
TAKAI Yuki  慶應義塾大学, 理工学部, 特任助教 (90599698)
MIURA Takashi  慶應義塾大学, 理工学部 (60631934)
NAKAMURA Kentaro  慶應義塾大学, 理工学部, 特任助教 (90595993)
ARAI Keisuke  慶應義塾大学, 理工学部, 特任助教 (80422393)
HAGIHARA Kei  慶應義塾大学, 理工学部, 特任助教 (30512173)
KASHIO Tomokazu  慶應義塾大学, 理工学部, 特任助教 (10403106)
OTSUKI Rei  慶應義塾大学, 理工学部, 特任助教
HASEGAWA Yasuko  慶應義塾大学, 理工学部, 特任助教
TSUSHIMA Takahiro  慶應義塾大学, 理工学部, 研究員 (70583912)
HIROTSUNE Tomoki  慶應義塾大学, 理工学部
ONO Masataka  , 慶應義塾大学, 理工学部
KINGS Guido  Regensburg大学, Lehrstuhl für Reine Mathematik, 教授
Project Period (FY) 2009-05-11 – 2014-03-31
Keywords楕円曲線 / 虚数乗法 / Hecke指標 / ポリログ / p進L関数 / p進Beilinson予想
Outline of Final Research Achievements

Working on previous research concerning arithmetic geometric object called the “polylogarithm,” we formed a group of young researchers and attacked certain conjectures in arithmetic geometry. We succeeded in solving the p-adic Beilinson conjecture for certain Hecke characters of an imaginary quadratic field. This result is first such result in the non-cyclotomic case. We then discovered a potential candidate for the expression of the polylogarithm in the Hilbert modular case. We expect this candidate will play an important role in solving conjectures in arithmetic geometry.

Free Research Field

代数学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi