• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

New perspective of the sigma functions of algebraic curves and its applications to integrable systems

Research Project

Project/Area Number 21K03289
Research InstitutionKanazawa University

Principal Investigator

松谷 茂樹  金沢大学, 電子情報通信学系, 教授 (30758090)

Project Period (FY) 2021-04-01 – 2026-03-31
Keywordsσ関数 / 代数曲線 / 非線形可積分方程式 / 相補加群 / デデキント差積 / ワィエルシュトラス標準形式
Outline of Annual Research Achievements

2022年度は、2021年度に構築した一般の閉Riemann面でのσ関数の代数的構築を公表に注力した。一般の閉Riemann面は数値半群で非空隙列が記述されるWeierstrass点を持っており、それを明示的に示したWeierstrass標準形式の曲線と双有理である。 Weierstrass標準形式に着目し、一般の閉Riemann曲面でのσ関数の代数的構築に成功した。特に,Dedekindの差積とそれに関わる相補加群が重要な役割を行うことが判っているので,論文を二つに分けて,論文として投稿し、米田氏,Previato氏と共に「Algebraic construction of the sigma function for general Weierstrass curves」をMathematics (MDPI) に投稿し,「Complementary modules of Weierstrass canonical forms」をSIGMAに投稿しそれぞれ受領,出版されることになった。
また,出版社から依頼があった英文書籍の執筆に関しても,執筆を終え,1回めの審査を終えた。また、和書に関しても執筆を開始した。
この研究に関するものとしては「楕円関数・超楕円関数と微分方程式」という題名で、静岡複素解析幾何セミナーで,「DNA の超らせん構造と超楕円関数」に関して,武蔵野大学MCME セミナーで「DNA の超らせん構造と超楕円曲線上の実曲線」第28 回沼津改め静岡研究会で,関連する講演を行った。
また、広い意味の数学の社会への還元という意味では、SNSでの「動画で学ぶデータサイエンス勉強会」,静岡大学での「同窓会寄付講座」,九州大学での「IMI Workshop II: 材料科学における幾何と代数III」において,それぞれ「ものづくりの数学のすすめ」,「静岡大学から得たもの~企業研究者/アマチュア科学者・アマチュア数学者のすすめ~」,「産業現場での数学モデル化(現実と数学)について」という題名でそれぞれ講演を行った.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

2021-23年度の計画に従い、無限遠点をWeierstrass点とする点つき閉リーマン面でかつ、Weierstrassの標準形式と呼ばれる代数方程式に従う代数曲線でのDedekindの差積とそれによるσ関数の代数的構築の研究を予定を1年前倒しして達成できた。
また,2022-25年空間曲線や特異点論(特異曲線論)及びGalois群の可積分系への応用に関しても,執筆した書籍にその一部を明記でき,こちらも予定を大幅に早めてある程度達成できた。
しかし,困難はさほどないと認識していた実MKdV方程式の実超楕円関数解の導出に,大きなギャップが見つかり,この問題の解決が最も優先順位が高いものと判断し、これに注力することを考えている。
他方、Emma Previato氏が2022年6月に逝去し、共同研究者を失ったため,今後の研究推進に関しては、抜本的な見直しを迫られている。しばらくは単独での研究を継続する。

Strategy for Future Research Activity

2023年度の計画に従い、2022年に得られた一般の代数曲線に対するσ関数の代数的構築により得られた知見を基に可積分系への還元を目指す。
また,書籍の執筆,出版を通して、本研究での知見を広く広めることを目指す.
特に、DNAの形状に関わる問題である実MKdV方程式の実超楕円関数解の導出については本年度後半に再度トライをすることを考えている。

Causes of Carryover

研究集会がZoom開催となったため,旅費の出金が必要なくなったためである。
また,Windows11に対応するためPCのリプレースを行う計画であるが、応用の視点から内部メモリーを大規模化し、研究を加速させることを計画している。

  • Research Products

    (21 results)

All 2023 2022 Other

All Int'l Joint Research (1 results) Journal Article (14 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (6 results) (of which Invited: 6 results)

  • [Int'l Joint Research] Boston University(米国)

    • Country Name
      U.S.A.
    • Counterpart Institution
      Boston University
  • [Journal Article] 数学Libre 第92回:閉リーマン面上のワィエルシュトラスσ関数 XXVIII: オイラーの弾性 曲線を超える試み2023

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 1月号 Pages: 86-87

  • [Journal Article] 数学Libre 第93回:デカルトの呪縛2023

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 2月号 Pages: 86-87

  • [Journal Article] 数学Libre 第94回:結晶転位にまつわる話 I2023

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 3月号 Pages: 86-87

  • [Journal Article] Algebraic Construction of the Sigma Function for General Weierstrass Curves2022

    • Author(s)
      Komeda Jiryo、Matsutani Shigeki、Previato Emma
    • Journal Title

      Mathematics

      Volume: 10 Pages: 3010~3010

    • DOI

      10.3390/math10163010

    • Peer Reviewed / Open Access
  • [Journal Article] Complementary Modules of Weierstrass Canonical Forms2022

    • Author(s)
      Komeda Jiryo、Kanagawa Institute of Technology, Japan、Matsutani Shigeki、Previato Emma、Kanazawa University, Japan、Boston University, Boston, USA
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 18 Pages: 098

    • DOI

      10.3842/SIGMA.2022.098

    • Peer Reviewed / Open Access
  • [Journal Article] 数学Libre 第83回 閉リーマン面上のワィエルシュトラスσ関数 XIX:技術からの数学としての流れ2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 4月号 Pages: 90-91

  • [Journal Article] 数学Libre 第84回 閉リーマン面上のワィエルシュトラスσ関数 XX:相補加群とヤコビの逆公式2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 5月号 Pages: 88-89

  • [Journal Article] 数学Libre 第85回:閉リーマン面上のワィエルシュトラスσ関数 XXI: 加法定理2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 6月号 Pages: 86-87

  • [Journal Article] 数学Libre 第86回:閉リーマン面上のワィエルシュトラスσ関数 XXII: 巡回:群のガロア作用2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 7月号 Pages: 90-91

  • [Journal Article] 数学Libre 第87回:閉リーマン面上のワィエルシュトラスσ関数 XXIII: al 関数 I2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 8月号 Pages: 86-87

  • [Journal Article] 数学Libre 第88回:閉リーマン面上のワィエルシュトラスσ関数 XXIV: al 関数 II2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 9月号 Pages: 86-87

  • [Journal Article] 数学Libre 第89回:閉リーマン面上のワィエルシュトラスσ関数 XXV:ワィエルシュトラスの目指したもの2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 10月号 Pages: 88-89

  • [Journal Article] 数学Libre 第90回:閉リーマン面上のワィエルシュトラスσ関数 XXVI: Emma Previato 氏について2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 11月号 Pages: 86-87

  • [Journal Article] 数学Libre 第91回:閉リーマン面上のワィエルシュトラスσ関数 XXVII: 退化曲線の考察2022

    • Author(s)
      松谷茂樹
    • Journal Title

      現代数学

      Volume: 12月号 Pages: 90-91

  • [Presentation] DNA の超らせん構造と超楕円関数2023

    • Author(s)
      松谷茂樹
    • Organizer
      武蔵野大学MCME セミナー
    • Invited
  • [Presentation] DNA の超らせん構造と超楕円曲線上の実曲線2023

    • Author(s)
      松谷茂樹
    • Organizer
      第28 回沼津改め静岡研究会
    • Invited
  • [Presentation] ものづくりの数学のすすめ2022

    • Author(s)
      松谷茂樹
    • Organizer
      動画で学ぶデータサイエンス勉強会(70 回記念講演)
    • Invited
  • [Presentation] 静岡大学から得たもの~企業研究者/アマチュア科学者・アマチュア数学者のすすめ~2022

    • Author(s)
      松谷茂樹
    • Organizer
      静岡大学 理学研究科 同窓会寄付講座
    • Invited
  • [Presentation] 産業現場での数学モデル化(現実と数学)について2022

    • Author(s)
      松谷茂樹
    • Organizer
      IMI Workshop II: 材料科学における幾何と代数III
    • Invited
  • [Presentation] 楕円関数・超楕円関数と微分方程式2022

    • Author(s)
      松谷茂樹
    • Organizer
      静岡複素解析幾何セミナー
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi