2013 Fiscal Year Final Research Report
A Study on Methods for Automatically Finding Important Features in Sequential Labeling
Project/Area Number |
22500121
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Intelligent informatics
|
Research Institution | Ehime University |
Principal Investigator |
|
Project Period (FY) |
2010-04-01 – 2013-03-31
|
Keywords | 自然言語処理 / 機械学習 / オンライン学習 / 素性選択 / ロジスティック回帰 / L1正則化 |
Research Abstract |
In natural language processing, millions of feature functions are defined for the discriminative models used in many natural language tasks. These feature functions are elaborated by human experts, but it is obviously not easy even for the human experts to find and develop such millions of feature functions by hands. This research proposes efficient methods for online grafting and ensemble methods for improving accuracy of online grafting. Online grafting is a method for automatically selecting features and optimizing the parameters in L1-regularized logistic regression. The experiments have shown that our methods significantly improved efficiency of online grafting. Though our methods are approximation techniques, deterioration of prediction performance was negligibly small. The ensemble methods using probabilistic algorithms achieved to improve the accuracy of online grafting.
|
Research Products
(10 results)
-
-
-
-
-
-
-
-
[Remarks] 二宮崇 主辞駆動句構造文法のための同期文法の実現に向けて 工学ジャーナル vol.11 pp. 178-183 愛媛大学工学部, 2012年
-
[Remarks] 二宮崇:シーズ(研究成果)探訪vol.81 データの自動分類とテキストの構文解析―高速化と高精度化―自動的に特徴を学習するオンライン学習と言語学的文法に基づく構文解析 月刊愛媛ジャーナルvol.25 no.7 p.80-82 2011年
-
[Remarks] 二宮 崇: HPSG 構文解析とスーパータガー. 愛媛大学数学談話会にて講演,2011 年.