2015 Fiscal Year Final Research Report
Noncommutative Solitons and application to string theory and integrable systems
Project/Area Number |
23740182
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Particle/Nuclear/Cosmic ray/Astro physics
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2011-04-28 – 2016-03-31
|
Keywords | ソリトン / インスタントン / 可積分系 / ツイスター理論 / 非可換幾何 / ADHM構成法 / モノポール / ハイパーケーラー計量 |
Outline of Final Research Achievements |
We have studied solitons in noncommutative spaces. In particular, we have mostly proved a reciprocity in the ADHM construction of noncommutative instantons. Furthermore, by examining algebraic properties of quasideterminants, we clarified mathematical structure of the noncommutative soliton equations. We also discussed significance of noncommutative extension of them.
|
Free Research Field |
素粒子論、数理物理
|