2016 Fiscal Year Final Research Report
Moduli theory of non linear elliptic operators over non compact manifolds
Project/Area Number |
25287009
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto University |
Principal Investigator |
Kato Tsuyoshi 京都大学, 理学(系)研究科(研究院), 教授 (20273427)
|
Co-Investigator(Kenkyū-buntansha) |
木田 良才 東京大学, 数理(科)学研究科(研究院), 准教授 (90451517)
|
Co-Investigator(Renkei-kenkyūsha) |
Kida Yoshikata 東京大学, 数理科学研究科, 准教授 (90451517)
Oguni Shin-ichi 愛媛大学, 理工学研究科, 准教授 (00549446)
Fukaya Tomohiro 首都大学, 東京理工学研究科, 准教授 (40583456)
Tsukamoto Masaki 京都大学, 理学研究科, 准教授 (70527879)
Matsuo Shinichiroh 名古屋大学, 多元数理科学研究科, 准教授 (40599487)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Keywords | ゲージ理論 / 非可換幾何学 / モノポール写像 / 普遍被覆空間 |
Outline of Final Research Achievements |
I have constructed a monopole map over the universal covering space of a compact oriented smooth four manifold. We apply the infinite dimensional Bott periodicity by Higson-Kasparov-Trout. In particular its degree was given when the linearized map is isomorphic, as an element in the equivariant E theory. It produces a homomorphism between K group of C* algebras related to the group ring. It corresponds to a covering version of the Bauer-Furuta degree. As an application, we proposed an aspherical 10/8 inequality for spin classifying 4 manifolds. We have also verified that it certainly holds for large class of 4 manifolds which includes complex minimal surfaces of general type.
|
Free Research Field |
幾何学
|