• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

The study of ideal limits of sequences of test configurations

Research Project

  • PDF
Project/Area Number 25610012
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

MABUCHI TOSHIKI  大阪大学, その他部局等, 名誉教授 (80116102)

Co-Investigator(Renkei-kenkyūsha) NAKAGAWA Yasuhiro  佐賀大学, 大学院工学研究科, 教授 (90250662)
NITTA Yasufumi  東京工業大学, 大学院理工学研究科, 助教 (90581596)
Project Period (FY) 2013-04-01 – 2017-03-31
Keywordsテスト配位列 / K-安定性 / Donaldson-二木不変量 / polybalanced計量 / 相対安定性
Outline of Final Research Achievements

We made a systematic study of the completion of the moduli space of test configurations for a polarized algebraic mamifold. As a typical example of our study, we obtain the Donaldson-Futaki invariant for sequences of test configurations on a polarized algebraic manifold. This then allows us to introduce the concept of strong K-stability. Moreover, by a joint work with Nitta, we showed that strong K-stability implies asymptotic Chow stability. These results in particular give us various applications in the existence problem of extremal Kaehler metrics.

Free Research Field

複素微分幾何学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi