• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Developement of the theory of non-Gorenstein rings and a study of j-multiplicity

Research Project

  • PDF
Project/Area Number 26400054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionMeiji University

Principal Investigator

Tran Thi Phuong  明治大学, 研究・知財戦略機構, 研究推進員(客員研究員) (00649824)

Co-Investigator(Kenkyū-buntansha) 松岡 直之  明治大学, 理工学部, 専任講師 (80440155)
谷口 直樹  明治大学, 理工学部, 助教 (30782510)
Co-Investigator(Renkei-kenkyūsha) GOTO Shiro  明治大学, 理工学部, 名誉教授 (50060091)
Project Period (FY) 2014-04-01 – 2018-03-31
KeywordsAlmost Gorenstein環 / Gorenstein環 / 系列的Cohen-Macaulay環 / Rees代数 / Arf環
Outline of Final Research Achievements

The purpose of this research is to enrich the theory of one-dimensional almost Gorenstein rings, which was originally studied by Barucci-Froeberg and Goto-Matsuoka-Phuong, and to develop the theory for higher dimension. Among them, we studied the almost Gorenstein property for Rees algebras, determinantal rings, and Arf rings. In parallel, we analyzed the sequentially Cohen-Macaulay property for the Rees algebras in order to make progress the theory of non-Cohen-Macaulay rings and modules.

Free Research Field

代数学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi