• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Researches on holomorphic mapings of Riemann surfaces---existence of mappings and conformal invariants

Research Project

  • PDF
Project/Area Number 26400140
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionYamaguchi University

Principal Investigator

MASUMOTO Makoto  山口大学, 大学院創成科学研究科, 教授 (50173761)

Co-Investigator(Kenkyū-buntansha) 柴 雅和  広島大学, 工学研究科, 名誉教授 (70025469)
山田 陽  東京学芸大学, 教育学部, 名誉教授 (60126331)
柳原 宏  山口大学, 大学院創成科学研究科, 教授 (30200538)
中村 豪  愛知工業大学, 工学部, 教授 (50319208)
郷間 知巳  山口大学, 大学院創成科学研究科, 助手 (70253135)
Project Period (FY) 2014-04-01 – 2018-03-31
Keywordsリーマン面 / 正則写像 / 等角写像 / 極値的長さ / 双曲的長さ / 穴あきトーラス
Outline of Final Research Achievements

A once-holed torus is, by definition, a Riemann surface homeomorphic to a once-punctured torus. The space T of once-holed tori with marked handle is identified with a smooth closed domain in the 3-dimensional euclidean space. Now, fix a Riemann surface Y with marked handle. We investigate the set A of elements X in T which allow holomorphic mappings into Y, and prove that it is a closed domain with Lipschitz boundary and is homeomorphic to T. Moreover, the boundary of A is not smooth in some cases. We also consider the set B of of elements X in T that are
conformally embedded into Y, and obtain similar results for B.

Free Research Field

数物系科学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi