• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A constructive study of real analytic automorphic forms using the branching rule of representations of reductive Lie groups as leverage

Research Project

Project/Area Number 17K05172
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

MORIYAMA Tomonori  大阪大学, 大学院理学研究科, 准教授 (80384171)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords保型形式 / 表現論 / テータ級数 / フーリエ係数 / 整数論 / 実解析的保型形式 / ポアンカレ級数 / 不変式 / ヘッケ作用素 / 特殊値 / Eisenstine級数 / 分岐則
Outline of Final Research Achievements

Although there are many known methods of constructing concrete examples of real analytic automorphic forms, few of them stand up to precise study compared to holomorphic automorphic forms. The purpose of this project was to remedy this situation by using the branching rules of representations of reductive Lie groups. As a first and important step, we succeeded in constructing an integral expression for generalized Whittaker functions on real symplectic group of rank two, which generate certain generalized principal series representations. This integral expression is given by a double inverse Mellin transform.

Academic Significance and Societal Importance of the Research Achievements

今回得られた一般化Whittaker函数の積分表示式は、パラメータに関する挙動が調べやすく保型L函数への応用上便利であろう。また、多くの困難が予想される一般化Whittaker函数を用いたポアンカレ級数を用いた実解析的ジーゲル保型形式の構成にも役立てられると思われる。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (6 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Open Access: 2 results) Presentation (4 results) (of which Invited: 2 results)

  • [Journal Article] ON AN AVERAGE OF CRITICAL VALUES OF RANKIN-SELBERG $L$-FUNCTIONS2020

    • Author(s)
      Moriyama, Tomonori
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2136 Pages: 95-100

    • NAID

      120006888134

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] THETA SERIES CONSTRUCTED FROM INVARIANT $E_{8}$-HARMONIC POLYNOMIALS2019

    • Author(s)
      森山知則
    • Journal Title

      数理解析研究所講究録

      Volume: 2100 Pages: 43-51

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Presentation] Theta series associated with invariant harmonic polynomials- examples and future problems-2019

    • Author(s)
      森山 知則
    • Organizer
      幾何学における代数的・組み合わせ論的視点 第3回: 不変式・保型形式と幾何学
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On an average of critical values of Rankin-Selberg L-functions.2019

    • Author(s)
      源嶋孝太, 森山知則
    • Organizer
      保型形式,保型表現とその周辺
    • Related Report
      2018 Research-status Report
  • [Presentation] Theta series constructed from invariant harmonic polynomials2018

    • Author(s)
      森山知則
    • Organizer
      5th Kyoto conference on automprphic forms
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Theta series constructed from invariant harmonic polynomials2018

    • Author(s)
      森山知則
    • Organizer
      RIMS共同研究(公開型)「保型形式の解析的・数論的研究」
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi