Invariants and balancing conditions for singularities of solutions of geometric variational problems
Project/Area Number |
18540219
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Osaka City University |
Principal Investigator |
KATO Shin Osaka City University, 大学院・理学研究科, 准教授 (10243354)
|
Co-Investigator(Kenkyū-buntansha) |
IMAYOSHI Yoichi 大阪市立大学, 大学院・理学研究科, 教授 (30091656)
KASUE Atsushi 金沢大学, 理工研究域数物科学系, 教授 (40152657)
HASHIMOTO Yoshitake 東京都市大学, 知識工学部, 教授 (20271182)
|
Project Period (FY) |
2006 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,020,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥720,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 多様体上の解析 / 極小曲面 / スカラー曲率 / 特異点 / 均衡条件 |
Research Abstract |
We analize the collapse of n-end catenoids of genus O, a significant class of minimal surfaces in the Euclidian 3-space, by means of the relative weights of end-pairs of the surfaces. On the other hand, we generalize the formulation of the existence condition of n-end catenoids in the case of genus O to the case of genus 1.Moreover, we also generalize the formulation to the case of maximal surfaces in the Lorentzian 3-space, and furthermore, analize the correspondence between the symmetry of maximal surfaces and the singular set.
|
Report
(6 results)
Research Products
(7 results)