• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dynamics of reaction-diffusion-ODE system

Research Project

Project/Area Number 18K03354
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionIbaraki University

Principal Investigator

Suzuki Kanako  茨城大学, 理工学研究科(理学野), 准教授 (10451519)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords反応拡散系 / 定常解の安定性 / パターン形成 / 拡散誘導不安定化
Outline of Final Research Achievements

We study a general reaction-diffusion-ODE system, which consists of several ordinary differential equations coupled with a reaction-diffusion equation, in a bounded domain and with Neuman boundary condition. There are a lot of mathematical models in the form of a reaction-diffusion-ODE system, for example, models of pattern formation, and models of ecological dynamics.
It has been proved that all near-equilibrium (regular) patterns of a general reaction-diffusion-ODE system are unstable, regardless of the particular structure assumption on nonlinearities. This observation suggests that stable stationary solutions arising in models with non-diffusive components must be far-from-equilibrium exhibiting singularities. We have presented the existence of stationary solutions with jump-discontinuities and have provided sufficient conditions for their stability.

Academic Significance and Societal Importance of the Research Achievements

拡散-非拡散系はパターン形成の数理モデルとしても多く用いられているが,個々のモデルに対して数値実験などが行われ,ダイナミクスに関する体系的な研究はほとんどなされていなかった.本研究により,拡散-非拡散系のダイナミクスは,古典的な反応拡散系のそれとはまったく異なることが明らかとなった.特に,拡散-非拡散系の初期値問題の解の挙動は特異的なものに限られるため,本研究結果は数値実験結果を正しく理解するために重要な役割を果たす.これはモデルの再考や現象の理解につながる大変意義のある結果であると考えられる.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (25 results)

All 2024 2023 2022 2020 2019 2018 Other

All Int'l Joint Research (12 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (7 results) (of which Int'l Joint Research: 6 results,  Invited: 6 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Heidelberg University(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Wroclaw(ポーランド)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Stable discontinuous stationary solutions to reaction-diffusion-ODE systems2023

    • Author(s)
      Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch and Kanako Suzuki
    • Journal Title

      Communications in Partial Differential Equations

      Volume: 48 Issue: 3 Pages: 478-510

    • DOI

      10.1080/03605302.2023.2190525

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Instability of all regular stationary solutions to reaction-diffusion-ODE systems2022

    • Author(s)
      Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki
    • Journal Title

      Journal of Differential Equations

      Volume: 337 Pages: 460-482

    • DOI

      10.1016/j.jde.2022.08.007

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Dispersive estimates for quantum walks on 1D lattice2022

    • Author(s)
      MAEDA Masaya、SASAKI Hironobu、SEGAWA Etsuo、SUZUKI Akito、SUZUKI Kanako
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 1 Pages: 217-246

    • DOI

      10.2969/jmsj/85218521

    • NAID

      130008144272

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Criterion toward understanding non-constant solutions to <i>p</i>-Laplace Neumann boundary value problem2020

    • Author(s)
      K. Suzuki
    • Journal Title

      Mathematical Journal of Ibaraki University

      Volume: 52 Issue: 0 Pages: 1-13

    • DOI

      10.5036/mjiu.52.1

    • NAID

      130007940502

    • ISSN
      1343-3636, 1883-4353
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamics of solitons for nonlinear quantum walks2019

    • Author(s)
      Maeda Masaya、Sasaki Hironobu、Segawa Etsuo、Suzuki Akito、Suzuki Kanako
    • Journal Title

      Journal of Physics Communications

      Volume: - Issue: 7 Pages: 075002-075002

    • DOI

      10.1088/2399-6528/aafe2c

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Stability of stationary solutions to reaction-diffusion-ODE systems2024

    • Author(s)
      Kanako Suzuki
    • Organizer
      Turing symposium on Morphogenesis, 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stability and instability of stationary solutions to reaction-diffusion-ODE systems2023

    • Author(s)
      Kanako Suzuki
    • Organizer
      Reaction-Diffusion Equations and Related Stochastic Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Instability and diffusion-driven blowup in some reaction-diffusion-ODE systems2019

    • Author(s)
      Kanako Suzuki
    • Organizer
      RIMS, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Spatial patterns of some reaction-diffusion-ODE systems2019

    • Author(s)
      Kanako Suzuki
    • Organizer
      Modeling Biological Phenomena by Parabolic PDEs and their Analysis
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Reaction-diffusion-ODE system の解のダイナミクス2018

    • Author(s)
      鈴木 香奈子
    • Organizer
      第115回神楽坂解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Bounded and unbounded spatial patterns to some reaction-diffusion-ODE systems2018

    • Author(s)
      Kanako Suzuki
    • Organizer
      AISM2018 "Emergence and Dynamics of Patterns in Nonlinear Partial Deferential Equations and Related Fields"
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability and blowup of solutions to some reaction-diffusion-ODE systems2018

    • Author(s)
      Kanako Suzuki
    • Organizer
      Nonlinear Partial Differential Equations --Japan-China Project for Young Mathematicians 2018--
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Turing symposium on Morphogenesis, 20242024

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi