• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Building-up Differential Homotopy Theory

Research Project

Project/Area Number 18K18713
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionKyushu University

Principal Investigator

IWASE Norio  九州大学, 数理学研究院, 教授 (60213287)

Project Period (FY) 2018-06-29 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
KeywordsDiffeology / Topology / Homotopy / Loop / Algebraic / Differential / Complex / Smooth CW Complex / Whitney Approximation / Partition of Unity / Smooth Handles / Cubic Complex / A-infinity Structure / Path Concatenation / Reflexivity / enough many functions / 可微分空間 / CW複体 / 単体複体 / 可微分写像 / Differentiable structure / Manifold / Stratified space / CW complex / smooth structure / diffeology / differentiable structure / homotopy theory / de Rham theory / algebraic topology
Outline of Final Research Achievements

First, we introduce a new definition of differential forms so as to obtain de Rham theorem in full generality, which can not be obtained using the genuine definition of diffeological differential forms. This also enables us to obtain the genuine de Rham theorem for smooth CW complexes.
Second, to study A∞ structure on a concatenation of paths, we first show the concatenation is smooth on a "reflexive" diffeological space, by restricting paths to satisfy the stability condition saying that paths are stable on (-∞,0] and on [1,∞). We also introduce a "stabilised concatenation" to show that the concatenation is smooth in full generality.
Finally, we introduce a new notion of a fat smooth CW complex which enables us to conclude that a manifold is a fat smooth CW complex.

Academic Significance and Societal Importance of the Research Achievements

微分空間は通常は微分不可能と考えられる対象にも微分構造を導入して解析的な操作を可能にするもので、今後の理論の展開次第では数学全体に大きなインパクトを与えうるものだと考えます。特にホモトピー論に於いてはその基礎となる対象は連続性までしか考慮されて来ませんでしたが、微分空間を考えることによりこれらは【自然に】滑らかなものとみなされます。ただ、現状ではそういった読み替えの方法が幾通りもあり、その中で真に【簡明かつ自然】なものが何なのかについて知る必要があります。本研究では【簡明かつ自然】なものとしてホモトピー論と微分構造の間に橋を架けることを希求し、その幾つかについては達成できたと考えます。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (20 results)

All 2023 2022 2021 2020 2019 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 5 results,  Invited: 2 results) Remarks (3 results) Funded Workshop (2 results)

  • [Journal Article] Lusternik-Schnirelmann theory to topological complexity from $A_{\infty}$-view point2023

    • Author(s)
      Iwase Norio
    • Journal Title

      Topological Methods in Nonlinear Analysis

      Volume: - Pages: 1-22

    • DOI

      10.12775/tmna.2022.060

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Smooth $A_{\infty}$-form on a diffeological loop space2023

    • Author(s)
      Norio IWASE
    • Journal Title

      Contemporary Mathematics

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] WHITNEY APPROXIMATION FOR SMOOTH CW COMPLEX2022

    • Author(s)
      Norio IWASE
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 76 Issue: 1 Pages: 177-186

    • DOI

      10.2206/kyushujm.76.177

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Mayer-Vietoris sequence for differentiable/diffeological spaces2019

    • Author(s)
      Norio IWASE, Nobuyuki IZUMIDA
    • Journal Title

      Algebraic Topology and Related Topics (Mohali, 2017), Trends in Mathematics, Birkhauser

      Volume: - Pages: 123-151

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Topological spherical space form の位相的複雑さ -- Python を用いた決定 --2022

    • Author(s)
      岩瀬 則夫, 宮田 祐也
    • Organizer
      RIMS 共同研究:「変換群論の新潮流」
    • Related Report
      2022 Annual Research Report
  • [Presentation] Smooth CW Complex2022

    • Author(s)
      岩瀬 則夫
    • Organizer
      京都・九州・信州三大学合同トポロジーセミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] Further steps to differential homotopy theory -- $A_{\infty}$-structures in Diffeology --2022

    • Author(s)
      Iwase, Norio
    • Organizer
      AMS-EMS-SMF meeting
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] その1. L-S カテゴリ数 -- A∞ 理論から --2022

    • Author(s)
      岩瀬 則夫
    • Organizer
      空間の代数的・幾何的モデルとその周辺
    • Related Report
      2022 Annual Research Report
  • [Presentation] その2. 位相的複雑さ -- A∞ 理論から --2022

    • Author(s)
      岩瀬 則夫
    • Organizer
      空間の代数的・幾何的モデルとその周辺
    • Related Report
      2022 Annual Research Report
  • [Presentation] Topological Complexity of $S^3/Q_8$ as a Linear Problem2022

    • Author(s)
      Iwase, Norio
    • Organizer
      Classifying spaces in homotopy theory: in honour of Ran Levi’s 60th Birthday
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Smooth $A_{\infty}$ structure on a diffeological loop space2022

    • Author(s)
      Iwase, Norio
    • Organizer
      Topology Seminar at Aberdeen University
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Determination of Topological Complexity of $S^3/Q_8$ with python2022

    • Author(s)
      岩瀬 則夫, 宮田 祐也
    • Organizer
      トポロジーとコンピュータ
    • Related Report
      2022 Annual Research Report
  • [Presentation] Whitney Approximation sor Smooth CW Complexes2021

    • Author(s)
      Norio IWASE
    • Organizer
      Seminar on diffeology and related topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Steps to the differential homotopy theory2021

    • Author(s)
      Norio IWASE
    • Organizer
      Advances in Homotopy Theory
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 微分CW複体について2019

    • Author(s)
      岩瀬則夫
    • Organizer
      微分空間・トポロジーと組み合わせ構造
    • Related Report
      2019 Research-status Report
  • [Remarks] 岩瀬 則夫 の 公表 文献

    • URL

      https://www2.math.kyushu-u.ac.jp/~iwase/Works/

    • Related Report
      2020 Research-status Report 2019 Research-status Report 2018 Research-status Report
  • [Remarks] Building-up Differential Homotopy Theory

    • URL

      https://www2.math.kyushu-u.ac.jp/~iwase/BDHT/

    • Related Report
      2020 Research-status Report 2019 Research-status Report 2018 Research-status Report
  • [Remarks] Building-up Differential Homotopy Theory 2020

    • URL

      https://www2.math.kyushu-u.ac.jp/~iwase/BDHT2/

    • Related Report
      2020 Research-status Report 2019 Research-status Report
  • [Funded Workshop] Building-up Differential Homotopy Theory 2020 in Shinshu2020

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] Building-up Differential Homotopy Theory2019

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi