Resolvent type trace formulas, automorphic forms and number theory
Project/Area Number |
19540039
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyushu University |
Principal Investigator |
GON Yasuro Kyushu University, 大学院・数理学研究院, 准教授 (30302508)
|
Project Period (FY) |
2007 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 数論 / 保型形式 / ディリクレ級数 / 跡公式 / 総双曲 / 対相関 / レギュレーター / 総実代数体 / ヒルベルトモジュラー群 / ヒルベルトモジュラー多様体 / セルバーグ跡公式 / セルバーグ型ゼータ関数 / 実二次体 / 双曲多様体 / 重み付軌道積分 / セルバーグぜータ関数 / ルエルゼータ関数 |
Research Abstract |
Automorphic forms are important functions that appear when researching number theory. The trace formula is one of the most important tools in studying automorphic forms. We proved various formulas on some types of trace formulas, which is useful for application to number theory. Based on our results, we also proved analytic properties of Ruelle zeta functions and Selberg zeta functions.
|
Report
(6 results)
Research Products
(21 results)