• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Artificial intelligence-based analysis of chest X-ray to predict hemodynamic parameters

Research Project

Project/Area Number 19K17559
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 53020:Cardiology-related
Research InstitutionMie University

Principal Investigator

Toba Shuhei  三重大学, 医学部附属病院, 助教 (20806111)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywords人工知能 / 胸部X線写真 / 先天性心疾患 / 血行動態 / 血行動態予測 / 胸部レントゲン写真 / 基盤モデル / 転移学習 / 12誘導心電図 / 小児 / 学校心臓検診 / 胸部X線 / 肺体血流比 / 機械学習 / deep learning
Outline of Research at the Start

肺体血流比(Qp/Qs)は、先天性心疾患を有する患者における治療方針の決定や手術適応の判断に重要な指標であるが、その正確な測定にはカテーテル検査を必要とするため、測定における侵襲が大きい。本研究では、近年飛躍的に精度が向上している機械学習(いわゆる人工知能、AI)による画像認識技術を用いて、肺体血流比を胸部X線写真から正確に予測する方法を開発する。さらに同手法を他の様々な血行動態指標に応用し、より低侵襲で迅速、簡便な血行動態指標の検査法を開発する。

Outline of Final Research Achievements

We developed artificial intelligence to predict pulmonary to systemic flow ratio, an important hemodynamic index for patients with congenital heart disease, from chest radiographs, and applied for a patent. In addition, we have developed an artificial intelligence to predict hemodynamics from chest radiographs in the field of adult cardiology, and an artificial intelligence that automatically classifies pediatric 12-lead electrocardiograms. The results were presented in a journal and at national and international conferences.

Academic Significance and Societal Importance of the Research Achievements

本研究は、人工知能により胸部X線写真から血行動態(カテーテル検査結果)を予測できることを世界で初めて示し、それが小児・成人を問わず様々な血行動態指標に応用可能であることを示した。より低侵襲かつ簡便な胸部X線写真から血行動態を正確に予測できれば、小児・成人循環器診療において、正確な血行動態評価を頻回に行うことができるようになり、より優れた医療の実現につながる。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (14 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Book (1 results) Patent(Industrial Property Rights) (1 results)

  • [Int'l Joint Research] Boston Children's Hospital(米国)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] 先天性心疾患と人工知能-医師を代替するAI,超えるAI-2022

    • Author(s)
      鳥羽修平, 三谷義英
    • Journal Title

      循環器内科

      Volume: 91 Pages: 434-439

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Prediction of Pulmonary to Systemic Flow Ratio in Patients With Congenital Heart Disease Using Deep Learning-Based Analysis of Chest Radiographs2020

    • Author(s)
      Shuhei Toba, MD; Yoshihide Mitani, MD, PhD; Noriko Yodoya, MD; Hiroyuki Ohashi, MD; Hirofumi Sawada, MD, PhD; Hidetoshi Hayakawa,MD, PhD; Masahiro Hirayama, MD, PhD; Ayano Futsuki, MD; Naoki Yamamoto, MD; Hisato Ito,MD, PhD; Takeshi Konuma, MD, PhD; Hideto Shimpo,MD, PhD; Motoshi Takao, MD, PhD
    • Journal Title

      JAMA Cardiology

      Volume: - Issue: 4 Pages: 449-457

    • DOI

      10.1001/jamacardio.2019.5620

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Perioperative Changes of Pulmonary to Systemic Flow Ratio Predicted by Deep Learning-Based Analysis of Chest Radiographs in Patients with Atrial Septal Defect2023

    • Author(s)
      Yusuke Sugitani, Shuhei Toba, Keishin Hattori, Umezu Kentaro, Yoshihide Mitani, Hirofumi Sawada, Hiroyuki Ohashi, Noriko Yodoya, Kazunobu Ohya, Naoki Tsuboya, Hisato Itoh, Yu Shomura, Masahiro Hirayama, Motoshi Takao
    • Organizer
      第87回日本循環器学会学術集会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Quantitative analysis of hemodynamics from chest radiographs using deep learning.2022

    • Author(s)
      Tsuji S, Toba S, Sato A, Sugitani R
    • Organizer
      The 4th Annual Meeting of;Japanese;Association for;Medical Artificial Intelligence
    • Related Report
      2022 Annual Research Report
  • [Presentation] Development of base model for deep learning of chest radiographs.2022

    • Author(s)
      Sato A, Toba S, Tsuji S, Sugitani R
    • Organizer
      The 4th Annual Meeting of Japanese Association for Medical Artificial Intelligence. 2022年6月
    • Related Report
      2022 Annual Research Report
  • [Presentation] 人工知能による胸部X線写真からの定量的血行動態予測2022

    • Author(s)
      辻 清龍, 鳥羽 修平, 藤本 直紀, 佐藤 綾音, 土肥 薫
    • Organizer
      第70回日本心臓病学会学術集会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Application of Deep Learning in Pediatric Cardiology2021

    • Author(s)
      Shuhei Toba
    • Organizer
      AHA & JSPCCS joint webinar (Artificial Intelligence and 3D Imaging in Pediatric Cardiology)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 学校心臓検診心電図における人工知能の応用2021

    • Author(s)
      鳥羽修平、三谷義英、杉谷侑亮、大橋啓之、澤田博文
    • Organizer
      日本小児心電図学会学術総会 シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] Deep Learning-based Analysis of 12-lead Electrocardiogram for Pediatric Cardiac Disease Mass Screening in School-age Children2021

    • Author(s)
      Shuhei Toba, Yoshihide Mitani, et al.
    • Organizer
      日本循環器学会学術総会 プレナリーセッション
    • Related Report
      2021 Research-status Report
  • [Presentation] 学校心臓検診心電図を自動判読する人工知能の開発2021

    • Author(s)
      鳥羽修平,三谷義英、杉谷侑亮、大橋啓之,澤田博文,淀谷典子,大槻祥一郎、山崎誉斗,梅津健太郎
    • Organizer
      日本小児循環器学会学術総会 パネルディスカッション
    • Related Report
      2021 Research-status Report
  • [Presentation] Deep learning-based analysis of 12-lead electrocardiogram for pediatric cardiac disease mass screening in school-age children2021

    • Author(s)
      鳥羽修平、三谷義英、杉谷侑亮、ほか
    • Organizer
      第85回日本循環器学会学術集会
    • Related Report
      2020 Research-status Report
  • [Presentation] Automated analysis of 12-lead electrocardiogram for pediatric cardiac disease mass screening in school-age children by the combined use of signal processing and deep learning2020

    • Author(s)
      鳥羽修平、三谷義英、杉谷侑亮、ほか
    • Organizer
      American Heart Association Scientific Sessions 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Quantitative Analysis Of Chest X-ray Using Deep Learning To Predict Pulmonary To Systemic Flow Ratio In Patients With Congenital Heart Disease2019

    • Author(s)
      Shuhei Toba, Yoshihide Mitani, Noriko Yodoya, Hiroyuki Ohashi, Hirofumi Sawada, Hidetoshi Hayakawa, Masahiro Hirayama, Ayano Fusuki, Naoki Yamamoto, Hisato Ito, Takeshi Konuma, Hideto Shimpo, Motoshi Takao
    • Organizer
      American Heart Association Scientific Sessions 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 先天性心疾患周術期における、胸部 X 線写真を用いた肺体血流比予測 AI (人工知能)の評価検討2019

    • Author(s)
      鳥羽修平、小沼武司、石川廉太、山崎誉斗、金田真吏、伊藤 温志、平野 玲奈、夫津木 綾乃、山本 直樹、伊藤 久人、島本 亮、高尾 仁二
    • Organizer
      第62回関西胸部外科学会学術集会
    • Related Report
      2019 Research-status Report
  • [Presentation] Deep learningを用いた,胸部X線写真から肺体血流比を予測する方法の開発2019

    • Author(s)
      石川廉太、鳥羽修平、三谷義英、大矢和伸、淀谷 典子、大橋啓之、澤田博文、山崎 誉斗、夫津木綾乃、小沼 武司
    • Organizer
      第55回日本小児循環器学会総会・学術集会
    • Related Report
      2019 Research-status Report
  • [Presentation] 胸部レントゲン写真から肺体血流比を予測する回帰モデル(畳み込みニューラルネットワーク)における,精度向上の試み2019

    • Author(s)
      杉谷侑亮、鳥羽修平、大橋啓之、三谷義英
    • Organizer
      第2回日本メディカルAI学会
    • Related Report
      2019 Research-status Report
  • [Book] 「先天性心疾患と人工知能ー医師を代替するAI、超えるAIー」循環器内科, 91(4): 434-4392022

    • Author(s)
      鳥羽修平、三谷義英
    • Total Pages
      510
    • Publisher
      科学評論社
    • Related Report
      2021 Research-status Report
  • [Patent(Industrial Property Rights)] 評価システム、評価方法、学習方法、学習済みモデル、プログラム2019

    • Inventor(s)
      鳥羽修平、三谷義英、高尾仁二
    • Industrial Property Rights Holder
      三重大学
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2019-178086
    • Filing Date
      2019
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi