Prospects for Mordell-Weil Lattices andAlgebraic Surfaces
Project/Area Number |
20540051
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Rikkyo University |
Principal Investigator |
|
Project Period (FY) |
2008 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2012: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 代数幾何学 / モーデル・ヴェイユ格子 / 代数曲面 / K3曲面 / ガロア表現 / 球のつめこみ / 整点 / グレブナ基底 / 楕円曲面 / K3曲面 / モーデルヴェイュ格子 / 有理楕円曲面 / 乗法的不変式論 / 代数方程式 / ワイル群 / E_6,E_7,E_8 / abc-定理 / 整数点・整点 / フェルマー曲面 / ネロン・セヴェリ群 / 代数的サイクル / 球の詰め込み / K3 曲面 |
Research Abstract |
We have studied selected topics on Mordell-Weil lattices (MWL) of elliptic surfaces: (1) K3 surfaces and sphere packing problem, (2) Existence and finiteness theorem of semi-stable extremal elliptic surfaces of any arithmetic genus, (3) Galois representations and algebraic equations arising from MWL, (4) Construction of multiplicative excellent families of elliptic surfaces with MWL of type E_6, E_7 or E_8, (5) Integral sections and Groebner basis, (6) Lines as generators of Neron-Severi group of Fermat surfaces.
|
Report
(7 results)
Research Products
(70 results)