• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On a variational study of nonlinear Dirac equations on compact spin manifolds

Research Project

Project/Area Number 22540222
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTokyo Institute of Technology

Principal Investigator

ISOBE Takeshi  東京工業大学, 理工学研究科, 准教授 (10262255)

Project Period (FY) 2010-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2014: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2013: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords変分法 / モース理論 / ディラック方程式 / 超対称性シグマモデル / 山辺問題 / モース・フレアーホモロジー / ディラック作用素 / モース-フレアーホモロジー / デッラック方程式 / 変分問題 / ソボレフバンドル / 臨界点理論 / 共形はめ込み / 指数無限大 / 非コンパクトな変分問題
Outline of Final Research Achievements

We studied nonlinear Dirac equations on compact spin manifolds arising from geometry and physics via variational method. We obtain the following results: 1) For nonlinear Dirac equations obtained as 0-the order nonlinear perturbations of the Dirac operator, we proved the existence and multiplicity of solutions under assuming that the nonlinear term is subcritical. 2) For the case where the nonlinearity has critical growth, we prove a global compactness and the existence of solutions for the associated variational problem. 3) For the Dirac-geodesics problem (which is the 1-dimensional version of Dirac-harmonic maps), we prove the existence of solutions via infinite dimensional Linking theory. 4) For the spinorial Yamabe problem, we proved the existence of a solution via variational argument.

Report

(6 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Annual Research Report
  • 2012 Annual Research Report
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (11 results)

All 2014 2013 2012 2011 2010

All Journal Article (10 results) (of which Peer Reviewed: 9 results,  Open Access: 1 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Sobolev bundles with abelian structure groups2014

    • Author(s)
      Isobe, Takeshi
    • Journal Title

      Calculus of variations and partial differential equations

      Volume: 49 Issue: 1-2 Pages: 77-102

    • DOI

      10.1007/s00526-012-0572-6

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On superquadratic Dirac equations on compact manifolds2014

    • Author(s)
      Isobe, Takeshi
    • Journal Title

      数理解析研究所講究録

      Volume: 1896 Pages: 79-97

    • Related Report
      2014 Annual Research Report
    • Open Access
  • [Journal Article] A perturbation method for spinorial Yamabe type equations on S^ m and its application2013

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Mathematische Annalen

      Volume: 355 Issue: 4 Pages: 1255-1299

    • DOI

      10.1007/s00208-012-0818-9

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. I2012

    • Author(s)
      Takeshi Isobe, Antonella Marini
    • Journal Title

      J. Math. Phys.

      Volume: 53 Issue: 6

    • DOI

      10.1063/1.4728211

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. II2012

    • Author(s)
      Takeshi Isobe, Antonella Marini
    • Journal Title

      J. Math. Phys.

      Volume: 53 Issue: 6

    • DOI

      10.1063/1.4728215

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the existence of nonlinear Dirac geodesics on compact manifolds.2012

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Calc. Var.

      Volume: 43 Issue: 1-2 Pages: 83-121

    • DOI

      10.1007/s00526-011-0404-0

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds2011

    • Author(s)
      Takeshi Isobe
    • Journal Title

      J.Funct.Anal.

      Volume: 260 Issue: 1 Pages: 253-307

    • DOI

      10.1016/j.jfa.2010.09.008

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Existence results for solutions to nonlinear Dirac equations on compact spin manifolds2011

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Manuscripta Math

      Volume: 135 Issue: 3-4 Pages: 329-360

    • DOI

      10.1007/s00229-010-0417-6

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Regularity and energy quantization for the Yang-Mills-Dirac equations on 4-manifolds2010

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Differ.Geom.Appl.

      Volume: 28 Pages: 359-375

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Topological and analytical properties of Sobolev bundles, II : Higher dimensional cases.2010

    • Author(s)
      Takeshi Isobe
    • Journal Title

      Rev.Mat.Iberoam.

      Volume: 26 Pages: 729-798

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Presentation] On superquadratic Dirac equations on compact spin manofolds2013

    • Author(s)
      磯部 健志
    • Organizer
      偏微分方程式の解の幾何
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Annual Research Report
    • Invited

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi