2018 Fiscal Year Final Research Report
Clarification on topological models for ergodic transformation groups having infinite invariant measures
Project/Area Number |
15K04900
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Osaka Kyoiku University |
Principal Investigator |
|
Research Collaborator |
Hama Masaki
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 保測変換 / 無限ルベーグ空間 / 狭義エルゴード性 / 代入 / S-進性 |
Outline of Final Research Achievements |
I could prove the following three facts. Any factor map between ergodic measure-preserving transformations on infinite Lebesgue spaces is realized up to a measure theoretical isomorphism as a topological semi-conjugacy between strictly ergodic, locally compact Cantor systems. In the category of ergodic measure-preserving systems on infinite Lebesgue spaces, any diagram without any extension of two common transformations is realized up to a measure theoretical isomorphism as that of strictly ergodic, locally compact Cantor systems. The S-adic property is possessed by Bratteli-Vershik representations associated with almost minimal subshifts arising from non-primitive substitutions with a certain property between the maximal and second maximal eigenvalues of their incidence matrices.
|
Free Research Field |
エルゴード理論
|
Academic Significance and Societal Importance of the Research Achievements |
狭義エルゴード的同型表現定理は,分野の歴史と照らし合わせると,大変に重要である.事実,確率保測エルゴード変換に対する同型表現定理はW.Kriegerによって一般的な形で解決され,エルゴード理論の教科書にはよく掲載されている.一方で,殆ど原始的代入に付随する殆ど極小サブシフトのS-進性については,全く未開の領域であり,さらには非定常性を呈することが解明できたことは,原始的代入に付随するサブシフトにはなかった新しい現象である.
|