2018 Fiscal Year Final Research Report
Development of a digital human model capable of workload prediction considering muscle fatigue
Project/Area Number |
17K17871
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Human interface and interaction
Production engineering/Processing studies
|
Research Institution | Kobe University |
Principal Investigator |
Nishida Isamu 神戸大学, 工学研究科, 助教 (40776556)
|
Research Collaborator |
Daiju Yuki
Miura Hayato
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Keywords | 筋骨格モデル / 冗長筋 / 疲労モデル / デジタルヒューマンモデル |
Outline of Final Research Achievements |
The purpose of this study is to develop a digital human model that can predict workload according to muscle fatigue. In order to achieve this purpose, we proposed a musculoskeletal model that takes into account the role of redundant muscles that was not considered in the conventional musculoskeletal model. The redundant muscles are the muscles that act in opposition to the prime movers or as agonists of a movement. When the roles of this is ignored, the predicted muscle force is smaller than the actual one. Furthermore, we proposed a new muscle fatigue and recovery model that can predict the degree of muscle fatigue. The feature of this model is that it can predict muscle fatigue, considering the roles of slow-twitch and fast-twitch muscles that could not be considered before.
|
Free Research Field |
人間工学
|
Academic Significance and Societal Importance of the Research Achievements |
我が国では2007年に高齢化率が20%を超え,超高齢社会に突入している.また,若年層の製造業者の減少により製造現場での高齢化が大きな問題となっている.製造現場での作業者の高齢化が進むと,作業者の身体的な負担が増えるために作業の安全性や効率が損なわれることになる.本研究では,これらの課題を克服するために,作業者ごとに異なる筋力および疲労進展の程度などの身体特性を考慮して,作業時の筋肉の負荷を予測することが可能なデジタルヒューマンモデルを実現した.
|