2021 Fiscal Year Final Research Report
Control of minority carrier flow in visible light driven water splitting photocatalyst : characterization of defect properties
Project/Area Number |
19H02656
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 31020:Earth resource engineering, Energy sciences-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
小澤 健一 東京工業大学, 理学院, 助教 (00282822)
池田 茂 甲南大学, 理工学部, 教授 (40312417)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 光触媒 / スパッタリング / 多元化合物 |
Outline of Final Research Achievements |
In the Z-scheme photoelectrode system, we focused on the development of the oxygen-evolving electrode, which is the bottleneck of the overall reaction in the system, and attempted to introduce a band-graded structure. Specifically, our aim is to introduce an anion substitution structure into the electrode to control the valence band energy and promote the oxygen decomposition reaction. In this study, after establishing (1) a sputtering deposition method of bismuth vanadate (BiVO4) thin film, (2) anion substitution of BiVO4 by sulfur was attempted. The high quality crystal growth technique of BiVO4 thin film by self-flux was confirmed by sputtering method, and the improvement of photocurrent for sulfur substitution of BiVO4 was observed.
|
Free Research Field |
光半導体工学
|
Academic Significance and Societal Importance of the Research Achievements |
光触媒を電極に利用した二段階光励起光電極系では、水素発生電極と酸素発生電極を分離して活用するため材料選択の幅が広がり、原理的には広い光吸収帯域をカバーすることも可能になる。このため、触媒反応の高効率化が期待でき注目を集めている。本研究にて提案したスパッタリング法を用いて光電極を安価に大面積で再現性良く成膜可能になれば、将来の高効率大面積水素製造が可能になるものと期待される。さらにアニオン置換によるバンドエンジニアリングは、エネルギー変換効率を高める一つの手段として、学術的にも応用面でも意義のある研究と言える。
|