2022 Fiscal Year Final Research Report
Localized Risk Assessment for Vector of infectious Diseases using Landscape Analysis
Project/Area Number |
19K21673
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 4:Geography, cultural anthropology, folklore, and related fields
|
Research Institution | National Institute of Infectious Diseases |
Principal Investigator |
Osamu Komagata 国立感染症研究所, 昆虫医科学部, 室長 (20435712)
|
Co-Investigator(Kenkyū-buntansha) |
米島 万有子 熊本大学, 大学院人文社会科学研究部(文), 准教授 (20733281)
葛西 真治 国立感染症研究所, 昆虫医科学部, 部長 (80332360)
|
Project Period (FY) |
2019-06-28 – 2023-03-31
|
Keywords | ヒトスジシマカ / 画像解析 / 機械学習 |
Outline of Final Research Achievements |
The density of adult mosquitoes was estimated using field photography, and the danger of disease transmission was evaluated. We gathered all-sky images and data on mosquito populations from locations around Japanese parks where dengue fever infections have been reported, each with a distinct density of mosquitoes. Deep learning was used to evaluate these datasets, and the results showed a 90% accuracy rate on the correct responses when tested on 3200 training data and 1600 validation data. However, it should be noted that the study's data is restricted to the area where the training photos were collected. Therefore, more investigation is required to confirm the adaptability of this approach.
|
Free Research Field |
衛生昆虫学
|
Academic Significance and Societal Importance of the Research Achievements |
景観解析、特に全天球写真と蚊の採集データの統合によって、蚊の成虫の密度を推定する新しいアプローチを提供した。この方法論は、労力と時間のかかるフィールドワークに頼ることが多い従来の蚊の監視方法を省力化に将来的に貢献する可能性がある。機械学習技術を活用することで、現場の写真から蚊の密度を推定するという旧来の技術では難しかったことができる可能性があることを示した.
|