2022 Fiscal Year Final Research Report
Development of computer-aided diagnosis system for colorectal cancer in CT colonography using deep learning
Project/Area Number |
19K23601
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0403:Biomedical engineering and related fields
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Jin Ze 東京工業大学, 科学技術創成研究院, 助教 (40840278)
|
Project Period (FY) |
2019-08-30 – 2023-03-31
|
Keywords | 深層学習 / 画像支援診断 / 大腸がん / CT Conlonagraphy |
Outline of Final Research Achievements |
We have developed a diagnostic assistance system for colon cancer using CT colonography and deep learning. By integrating computed tomography (CT) technology with AI technology, it is possible to significantly improve the accuracy and efficiency of colon cancer diagnosis. The system uses a deep learning model to extract features of colon cancer and to confirm the presence of the disease based on these features. The model is trained using a large amount of CT colonography image data, resulting in high sensitivity and specificity. This system not only supports the diagnostic work of radiologists, but also improves the accuracy and speed of diagnosis. This allows for the early initiation of treatment for patients, contributing to the improvement of prognosis for colon cancer.
|
Free Research Field |
画像支援診断
|
Academic Significance and Societal Importance of the Research Achievements |
新たな技術の開発: 深層学習を利用した大腸がん診断システムの開発は、人工知能と医療イメージングの領域における新たな進展を示す。これは、AIの能力を活用して病気を診断する新たな手法の探求と発展に貢献します。 研究基盤の拡大: この研究は、AIが医療診断にどのように役立つかを理解する上での基盤を提供します。これは、深層学習やAI技術をさらに進化させるための重要なステップとなります。 早期発見と予後の改善: このシステムの使用は、大腸がんの早期発見と治療を可能にし、それにより予後を改善する可能性があります。
|