• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Filtered noetherian rings having homological finiteness

Research Project

  • PDF
Project/Area Number 21540035
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionShinshu University

Principal Investigator

NISHIDA Kenji  信州大学, 理学部, 教授 (70125392)

Project Period (FY) 2009 – 2012
Keywordsネータ多元環 / フィルター環 / フィルター加群 / マトリス双対 / アウスランダー正則 / アウスランダーゴレンステイン / ホモロジー代数学 / G-射影加群
Research Abstract

We define the topology of a filtered pseudo-compact algebra induced from a filter of a ring. Then we can use algebraic method to study a filtered pseudo-compact algebra. By defining toplogy of filtered pseudo compact algebra induced from the filter, we give filtered pseudo compact algebra pury algebraic definition of filtered pseudo compact algebra. That is, suppose that the filter is induced from the maximum idal then filtered pseudo compact algebra is noetherian and semiperfect. The category of all finitely generated modules over noetherian semiperfect ring has good property, i.e. all the modules in it has a projective cover. This fact is highly connected to approximation theory. Hence filtered pseudo compact algebra is expected to the representation theory of non-commutative noetherian algebras.

Research Products

(2 results)

All 2011 2009

All Presentation

  • [Presentation] 整環の表現と傾加群2011

    • Author(s)
      西田憲司
    • Organizer
      56回代数学シンポジウム
    • Place of Presentation
      岡山大学
    • Year and Date
      2011-08-09
  • [Presentation] フィルターネータ環上のマトリス双対2009

    • Author(s)
      亀山統胤、西田憲司
    • Organizer
      日本数学会
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-09-27

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi