2011 Fiscal Year Final Research Report
Moduli spaces and derived categories
Project/Area Number |
21540039
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hiroshima University |
Principal Investigator |
ISHII Akira 広島大学, 大学院・理学研究科, 准教授 (10252420)
|
Co-Investigator(Kenkyū-buntansha) |
SHIMADA Ichiro 広島大学, 大学院・理学研究科, 教授 (10235616)
SHUN-ICHI Kimura 広島大学, 大学院・理学研究科, 教授 (10284150)
HIDEYASU Sumihiro 広島大学, 大学院・理学研究科, 名誉教授 (60068129)
|
Project Period (FY) |
2009 – 2011
|
Keywords | 導来圏 / McKay対応 / ダイマー模型 / ミラー対称性 / ヒルベルトスキーム |
Research Abstract |
We determined the consistency condition for dimer models which ensures the derived equivalence between the quiver with relations and the 3-dimensional Gorenstein affine toric variety associated to it. We constructed a full strong exceptional collection consisting of line bundles on a 2-dimensional toric weak Fano stack. We proved that the remaining component in the special McKay correspondence is generated by an exceptional collection. We obtained a certain kind of description of the derived category of a Fermat variety. We obtained some results on iterated G-Hilbert schemes.
|
Research Products
(18 results)