2023 Fiscal Year Final Research Report
Estimation of post-harvest vegetation recovery based on forest structural attributes using time series of satellite data
Project/Area Number |
21K14883
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 40010:Forest science-related
|
Research Institution | Forest Research and Management Organization |
Principal Investigator |
SHIMIZU Katsuto 国立研究開発法人森林研究・整備機構, 森林総合研究所, 研究員 (30868170)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 衛星データ / 森林回復 / 伐採 / リモートセンシング |
Outline of Final Research Achievements |
This study aims to develop a method for predicting post-harvest forest recovery based on an indicator for forest structural attributes using time series satellite images. This study used time series satellite images acquired from 1984 to 2022 for mapping harvest events at 30-m spatial resolution over the entire Japan. The prediction models for tree height, canopy cover, and growing stock volume were developed and used for predicting post-harvest recovery. The method in this study can estimate post-harvest recovery based on the time series of predicted forest structural attributes.
|
Free Research Field |
森林計画学
|
Academic Significance and Societal Importance of the Research Achievements |
伐採後の森林の回復は、将来的な木材生産や土砂災害の防止などの森林の持つ機能に影響与えるため定量的な把握が重要となる。しかし、これまで広域の森林を対象とした定量的な指標に基づく推定手法は提示されていなかった。本研究では衛星データを利用して林冠高や樹冠被覆率などの林分構造を時間・空間的に予測することで、伐採後の林分回復成長の把握に役立てることができた。こうした手法で得られた成果は、地域の森林資源の予測などに役立てることが期待される。
|