2023 Fiscal Year Final Research Report
Study of integrable system using noncommutative algebraic geometry
Project/Area Number |
21K18575
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 11:Algebra, geometry, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Ueda Kazushi 東京大学, 大学院数理科学研究科, 准教授 (60432465)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Keywords | 非可換代数幾何学 / モジュライ空間 / ホモロジー的ミラー対称性 |
Outline of Final Research Achievements |
We defined a compact moduli space of marked noncommutative cubic surfaces as a geometric invariant theoretic compactification of the moduli space of relations of a quiver, and proved that it is an eight-dimensional toric variety containing the configuration space of six points in general position on the projective plane. We also proved homological mirror symmetry for wrapped Fukaya categories and Rabinowitz Fukaya categories of Milnor fibers of a class of Brieskorn-Pham singularities. We proved a conjecture of Seidel on the isomorphism of the Hochschild cohomologies of the Fukaya categories and and symplectic cohomologies for the same class of Brieskorn-Pham singularities along the way.
|
Free Research Field |
幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
非可換射影平面と非可換2次曲面の概念はArtin-Tate-Van den BerghとVan den Berghによって1990年と2011年に出版された論文で確立されたが、我々の結果は非可換3次曲面やより一般の非可換del Pezzo曲面の概念を確立するものであり、今後の発展の基礎となる重要なものである。また、Milnorファイバーの巻深谷圏やRabinowitz深谷圏に対するホモロジー的ミラー対称性は、有限次元代数の表現論や団代数の理論など、数学の他の分野とも関係が深い。
|