• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Geometric moduli theory and its theoretical applications

Research Project

  • PDF
Project/Area Number 23224001
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

Nakamura Iku  北海道大学, -, 名誉教授 (50022687)

Co-Investigator(Kenkyū-buntansha) IWASAKI KATSUNORI  北海道大学, 大学院理学研究院, 教授 (00176538)
ONO KAORU  京都大学, 数理解析研究所, 教授 (20204232)
TERAO HIROAKI  北海道大学, 国際本部, 特任教授 (90119058)
WENG LIN  九州大学, 数理学研究院, 教授 (60304002)
Co-Investigator(Renkei-kenkyūsha) ASAKURA MASANORI  北海道大学, 大学院理学研究院, 教授 (60322286)
ISHII AKIRA  広島大学, 大学院理学研究科, 教授 (10252420)
OOMOTO Toru  北海道大学, 大学院理学研究院, 教授 (20264400)
KATSURA TOSHIYUKI  法政大学, 経営システム工学科, 教授 (40108444)
KATSURADA HIDENORI  室蘭工業大学, 大学院工学研究科, 教授 (80133792)
SAITO MASAHIKO  神戸大学, 理学研究院, 教授 (80183044)
ABE NORIYUKI  北海道大学, 大学院理学研究院, 准教授 (00553629)
TANABE KENICHIRO  北海道大学, 大学院理学研究院, 准教授 (10334038)
NAKAMURA KENTARO  佐賀大学, 大学院工学系研究科, 准教授 (90595993)
HARASHITA SHUSHI  横浜国立大学, 大学院環境情報研究院, 准教授 (70396852)
YOSHINAGA MASAHIKO  北海道大学, 大学院理学研究院, 准教授 (90467647)
Project Period (FY) 2011-04-01 – 2016-03-31
Keywordsモジュライ / コンパクト化 / 安定性 / パンルヴェ方程式 / フレア理論 / ミラー対称性 / 超平面配置 / ゼータ関数
Outline of Final Research Achievements

In this project we aimed at studying global structures of certain geometric spaces so that we may apply them to the related mathematical theories. The main results of our studies are 1) construction of the second compactifications of moduli spaces of abelian varieties, and study of the relation with the other important compactifications, 2) proof of Riemann hypothesis for some of zeta functions of the moduli spaces of semi-stable vector bundles over an algebraic curve, 3) a characterization of one of Painleve differential equations through the study of stable vector bundles of rank two, 4) proof of the isomorphism between the quantum cohomology ring and the Jacobi ring of a potential in mirror symmetry through the study of the moduli space of Lagrangian submanifolds of a toric manifold, 5) generalization and further study of Arrow's impossibility theorem in statistical economics in terms of hyperplane arrangement.

Free Research Field

代数幾何学

URL: 

Published: 2017-05-10   Modified: 2017-05-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi