• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Geometric structures related to neutral metrics

Research Project

  • PDF
Project/Area Number 24540062
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMiyagi University of Education

Principal Investigator

Kamada Hiroyuki  宮城教育大学, 教育学部, 教授 (00249799)

Co-Investigator(Renkei-kenkyūsha) AIHARA YOSHIHIRO  福島大学, 人間発達文化学類, 教授 (60175718)
NAYATANI SHIN  名古屋大学, 大学院多元数理科学研究科, 教授 (70222180)
NAKAGAWA YASUHIRO  佐賀大学, 大学院工学系研究科, 教授 (90250662)
IZEKI HIROYASU  慶應義塾大学, 理工学部, 教授 (90244409)
NAKATA FUMINORI  福島大学, 人間発達文化学類, 准教授 (80467034)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywordsニュートラル計量 / ニュートラル構造 / パラ超複素構造 / 四元数CR構造 / 強積分可能性 / ツイスター空間 / ツイスター概CR構造
Outline of Final Research Achievements

A pseudo-Riemannian metric on a manifold is called a neutral metric if it has neutral signature, and a family of local neutral metrics that conicide, except for multiplication by -1, on the overlaps, is called a neutral structure. Davidov et al. obtained examples of compact complex surfaces with a quaternion-like structure (parahypercomplex structure) that admit compatible neutral structures, but never admit any compatible neutral metric. Then we show that their example of a hyperelliptic surface can be deformed to a compatible neutral structure, which is not locally conformal parahyperkahler. Also, we introduce the notion of strong integrability for a quaternionic CR manifold (of dimension greater than 7), and show that, under ultra pseudoconvexity and strong integrability, a partially integrable almost CR structure (called the twistor almost CR structure) is defined naturally on its twistor space.

Free Research Field

微分幾何学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi