• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on refining arithmetic conjectures for non-abelian extensions

Research Project

Project/Area Number 16K17575
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionTokyo University of Science (2017-2019)
Keio University (2016)

Principal Investigator

Nomura Jiro  東京理科大学, 理学部第二部数学科, 助教 (10772121)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2017: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsイデアル類群 / L関数 / 非可換拡大 / 非可換Fitting invariant / Stickelberger元 / Fittingイデアル / 虚二次体 / 非可換1Fitting invariant / p進Artin L関数 / 代数学
Outline of Final Research Achievements

I obtained a result on the integrality of Stickelberger elements attached to (not necessarily abelian)unramified extensions of imaginary quadratic fields.More precisely, I proved that a Stickelberger element coincides with a reduced norm of a matrix over a group ring.As a corollary, I proved that ideal class groups attached to unramified extrensions of imaginary quadratic extensions are annihilated by Stickelberger elements.

Academic Significance and Societal Importance of the Research Achievements

虚2次体に関する結果には不分岐拡大という仮定がついているが、この過程を外してしますと、結果が自明に成立してしまうため、結果的には虚2次体についての非可換Brumer-Stark予想を完全に解決しているということになる。非可換Brumer-Stark予想についての結果の多くは、数論的な強い仮定を必要とする場合が多いため、そのような仮定なしに成立するという点で重要な結果といえる。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (1 results)

All 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Integrality of Stickelberger elements attached to unramified extensions of imaginary quadratic fields2018

    • Author(s)
      Jiro Nomura
    • Journal Title

      Journal of Number Theory

      Volume: 2018 Pages: 332-343

    • DOI

      10.1016/j.jnt.2017.11.003

    • Related Report
      2017 Research-status Report
    • Peer Reviewed

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi