• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on geometry and algebra of knots and local moves

Research Project

Project/Area Number 17K05265
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionUniversity of Yamanashi (2020)
Osaka Electro-Communication University (2017-2019)

Principal Investigator

NAKAMURA Takuji  山梨大学, 大学院総合研究部, 教授 (60382024)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords結び目 / 局所変形 / 仮想結び目 / 溶接結び目 / パス変形 / Conway多項式 / ねじれ多項式 / シェル変形 / Alexander多項式 / Jones多項式 / 3次元多様体 / フロースパイン / トポロジー / 結び目理論
Outline of Final Research Achievements

In this studies, we obtain several results about relationships among local moves and invariants of knots. (1) We show that the pass move is an unknotting operation for welded knots. (2) We give a partial answer about the realization problem of Conway polynomials for a welded knot of pass unknotting number one. (3) We give a characterization of the writhe polynomial for a virtual knot in terms of shell moves. We also generalize it for 2-component virtual links. (4) We obtain an invariant of a closed oriented 3-manifold via its virtual knot diagram presentation and local moves.

Academic Significance and Societal Importance of the Research Achievements

本研究の目的は局所変形を通して,結び目の幾何的・代数的性質やそれらの関連性を明らかにすることであった.(1)古典的結び目ではパス変形は結び目解消操作でないため,溶接結び目特有の現象であり,溶接結び目の幾何的な研究の発展につながると考えている.(2)任意のConway多項式を実現するパス変形1回でほどける古典的結び目の構成は未解決であるが,溶接結び目での構成法からの応用が期待される.(3)仮想結び目の代数的不変量を特徴付ける局所変形を導入できた.別の不変量に対する同様の研究の展開が示唆される.(4)有向閉3次元多様体の計算可能な不変量を図式から得られたことは1つの研究方向を与えたと考えられる.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (21 results)

All 2020 2019 2018 2017 Other

All Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 7 results,  Open Access: 5 results) Presentation (13 results) (of which Int'l Joint Research: 1 results,  Invited: 12 results) Remarks (1 results)

  • [Journal Article] Writhe polynomials and shell moves for virtual knots and links2020

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      European Journal of Combinatorics

      Volume: 84 Pages: 103033-103033

    • DOI

      10.1016/j.ejc.2019.103033

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on coverings of virtual knots2019

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Online Ready Issue: 08 Pages: 1971002-1971002

    • DOI

      10.1142/s0218216519710020

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The pass move is an unknotting operation for welded knots2018

    • Author(s)
      Takuji Nakamura, Yasutaka Nakanishi, Shin Satoh b, Akira Yasuhara
    • Journal Title

      Topology and its Applications

      Volume: 247 Pages: 9-19

    • DOI

      10.1016/j.topol.2018.07.005

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Finiteness of the set of virtual knots with a given state number2018

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 27 Issue: 08 Pages: 1850049-1850049

    • DOI

      10.1142/s0218216518500499

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The 6- and 8-palette numbers of links2017

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Saito Masahico、Satoh Shin
    • Journal Title

      Topology and its Applications

      Volume: 222 Pages: 200-216

    • DOI

      10.1016/j.topol.2017.02.080

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The palette numbers of torus knots2017

    • Author(s)
      Hayashi Taiki、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 10 Pages: 1750060-1750060

    • DOI

      10.1142/s0218216517500602

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The palette numbers of 2-bridge knots2017

    • Author(s)
      Nakamura Takuji、Nakanishi Yasutaka、Saito Masahico、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 08 Pages: 1750047-1750047

    • DOI

      10.1142/s021821651750047x

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 仮想結び目図式のある局所変形について2020

    • Author(s)
      中村拓司
    • Organizer
      2019年度琉球結び目セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Flow spines and virtual knot diagrams2019

    • Author(s)
      中村拓司
    • Organizer
      Knots in Tsushima 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 3次元多様体の仮想結び目図式による表示に対する彩色不変量2019

    • Author(s)
      中村拓司
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 仮想結び目の奇交点対から得られる不変量について2019

    • Author(s)
      中村拓司
    • Organizer
      慶應トポロジーセミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On welded knots which can be unknotted by a single pass move2018

    • Author(s)
      中村拓司
    • Organizer
      拡大KOOKセミナー2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 結び目およびその一般化に対する局所変形について2018

    • Author(s)
      中村拓司
    • Organizer
      大阪市立大学数学研究所談話会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On local moves among the trefoil, the figure-8, and the unknot2018

    • Author(s)
      中村拓司
    • Organizer
      2018年度琉球結び目セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 局所変形と互いに距離1の3つの結び目2018

    • Author(s)
      中村拓司
    • Organizer
      大阪電気通信大学トポロジーセミナー;低次元多様体の幾何的性質と不変量の研究
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Pass moves for welded knots2017

    • Author(s)
      中村拓司,中西康剛,佐藤進,安原晃
    • Organizer
      拡大KOOKセミナー2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 仮想結び目のある半順序について2017

    • Author(s)
      中村拓司,中西康剛,佐藤進
    • Organizer
      日本数学会秋季総合分科会トポロジー分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] 溶接結び目をほどく2017

    • Author(s)
      中村拓司
    • Organizer
      2017年度琉球結び目セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 結び目の局所変形と多項式不変量について2017

    • Author(s)
      中村拓司
    • Organizer
      群馬大学トポロジーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 溶接結び目に対するパス変形について2017

    • Author(s)
      中村拓司,中西康剛,佐藤進,安原晃
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] 大阪電気通信大学教員情報データベース

    • URL

      https://research.osakac.ac.jp/index.php?%E4%B8%AD%E6%9D%91%E3%80%80%E6%8B%93%E5%8F%B8

    • Related Report
      2018 Research-status Report 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi