• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the classification of quasitoric manifolds

Research Project

Project/Area Number 18K13414
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionOsaka Prefecture University (2021)
University of Tsukuba (2018-2020)

Principal Investigator

Hasui Sho  大阪府立大学, 理学(系)研究科(研究院), 准教授 (50792454)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords擬トーリック多様体 / トーリックトポロジー / 代数的位相幾何学 / 擬トーリック多様体の分類 / トポロジー / ホモトピー論
Outline of Final Research Achievements

The subject of this research is to study the classification of quasitoric manifolds. With the idea, posed in the research plan, that we can construct some non-equivariant homeomorphisms between quasitoric manifolds by cutting the quotient polytope, I obtained some foundational results, which support some known classification results in a different direction.
On the other hand, as another approach to this kind of manifolds, I studied the moment-angle manifolds and their quotient manifolds, which include the quasitoric manifolds, from the viewpoint of characteristic classes, and obtained some new results. Those results have already been made up into a manuscript and submitted to a journal.

Academic Significance and Societal Importance of the Research Achievements

トーリックトポロジーは位相幾何学、代数幾何学、組み合わせ論などの諸分野の交差的領域であり、今回成果を得た対象である擬トーリック多様体とモーメント・アングル複体は組み合わせ的幾何学と位相幾何学の橋渡しをする位置にある。擬トーリック多様体に関する成果は組み合わせ的情報のトポロジーへの反映をより柔軟に捉えるための基礎となりうるものであり、モーメント・アングル複体についても特性類の観点からこれまであまり省みられていなかった部分に光を当てることができた。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2022 2021 2019 2018

All Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (8 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results)

  • [Journal Article] Odd primary homotopy types of the gauge groups of exceptional Lie groups2019

    • Author(s)
      S. Hasui, D. Kishimoto, T.S. So, and S. Theriault
    • Journal Title

      Proc. Amer. Math. Soc.

      Volume: 147 Issue: 4 Pages: 1751-1762

    • DOI

      10.1090/proc/14333

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Higher homotopy commutativity in localized Lie groups and gauge groups2019

    • Author(s)
      S. Hasui, D. Kishimoto, and M. Tsutaya
    • Journal Title

      Homology, Homotopy Appl.

      Volume: 21 Issue: 1 Pages: 107-128

    • DOI

      10.4310/hha.2019.v21.n1.a6

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] CLASSIFICATION OF TORIC MANIFOLDS OVER AN n-CUBE WITH ONE VERTEX CUT2018

    • Author(s)
      Sho Hasui、Hideya Kuwata、Mikiya Masuda、Seonjeong Park
    • Journal Title

      International Mathematics Research Notices

      Volume: 17 Issue: 05 Pages: 1-37

    • DOI

      10.1093/imrn/rny161

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016859

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] The Stiefel-Whitney classes of a moment-angle manifold are trivial2022

    • Author(s)
      Sho Hasui
    • Organizer
      Toric Topology 2022 in Osaka
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the classification of quasitoric manifolds2021

    • Author(s)
      蓮井翔
    • Organizer
      京都大学代数トポロジーセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] On the quasitoric manifolds over a simple polytope with one vertex cut2019

    • Author(s)
      Sho Hasui
    • Organizer
      Homotopy Theory Symposium 2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On the quasitoric manifolds over a simple polytope with one vertex cut2019

    • Author(s)
      Sho Hasui
    • Organizer
      Toric Topology 2019 in Okayama
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the quasitoric manifolds over a simple polytope with one vertex cut2019

    • Author(s)
      蓮井翔
    • Organizer
      微分空間・トポロジーと組み合わせ構造
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Classification of toric manifolds over an n-cube with one vertex cut2018

    • Author(s)
      蓮井翔
    • Organizer
      ホモトピー沖縄
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the quasitoric bundles2018

    • Author(s)
      Sho Hasui
    • Organizer
      Mapping Spaces in Algebraic Topology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the quasitoric bundles2018

    • Author(s)
      Sho Hasui
    • Organizer
      International seminar on Toric Topology and Homotopy Theory for young researchers
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi