• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New approximation algorithm for generalized function and its its application to numerical computation

Research Project

Project/Area Number 24540122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKyoto University

Principal Investigator

Ooura Takuya  京都大学, 数理解析研究所, 助教 (50324710)

Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2013: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2012: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords数値解析 / 超関数 / 連続Euler変換 / 数値計算法 / 数値積分 / 近似計算
Outline of Final Research Achievements

We propose new numerical computation methods which are derived from approximation of generalized function. Targets of computation are complicated oscillatory integral, multidimensional oscillatory integral, integral transform and fractional differential equations. New methods can be computed with high speed and high accuracy about oscillatory integrals in particular.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (8 results)

All 2015 2013 2012 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Remarks (2 results)

  • [Journal Article] Fast computation of Goursat's infinite integral with very high accuracy2013

    • Author(s)
      T. Ooura
    • Journal Title

      . Comput. Appl. Math.

      Volume: 249 Pages: 1-8

    • DOI

      10.1016/j.cam.2013.02.006

    • NAID

      120005244245

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Fast computation of Goursat's infinite integral with very high accuracy2013

    • Author(s)
      T. Ooura
    • Journal Title

      Journal of Computational and Applied Mathematics

      Volume: 249 Pages: 1-8

    • NAID

      120005244245

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Direct computation of generalized functions by continuous Euler transformation2012

    • Author(s)
      T. Ooura
    • Journal Title

      Sugaku Expositions

      Volume: 25 Pages: 89-104

    • NAID

      10026415315

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] Computation of an Infinite Integral with Unbounded Integrand2015

    • Author(s)
      T. Ooura
    • Organizer
      The 8th International Congress on Industrial and Applied Mathematics
    • Place of Presentation
      China National Convention Center inside the Beijing Olympic Green (China)
    • Year and Date
      2015-08-10
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 振動積分の数値計算法について2012

    • Author(s)
      大浦拓哉
    • Organizer
      応用数学合同研究集会
    • Place of Presentation
      龍谷大学瀬田キャンパス
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] 連続オイラー変換による振動積分の算法

    • Author(s)
      大浦拓哉
    • Organizer
      第42回数値解析シンポジウム
    • Place of Presentation
      松山道後温泉 道後館
    • Related Report
      2013 Research-status Report
    • Invited
  • [Remarks] Ooura's Mathematical Software Packages

    • URL

      http://www.kurims.kyoto-u.ac.jp/~ooura/index-j.html

    • Related Report
      2013 Research-status Report
  • [Remarks] Ooura's Mathematical Software Packages

    • URL

      http://www.kurims.kyoto-u.ac.jp/~ooura/index-j.html

    • Related Report
      2012 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi