Gevrey strong hyperbolicity and the structure of Hamilton map and flow
Project/Area Number |
26400167
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical analysis
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2014-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | Gevrey 強双曲性指数 / 初期値問題 / Gevrey クラス / 適切性 / 伝播錐 / 横断的 / 余接空間 / Gevrey強双曲型 / 局所化 / 横断的強双曲系 / Gevrey適切性 / 包合的特性多様体 / シンプレクティック特性多様体 / 局所化系 / 強双曲系 / Gevrey強双曲性指数 / 法束上で狭義双曲型 / 包合的 / Gevrey強双曲性 / Bronshteinの定理 |
Outline of Final Research Achievements |
Several fundamental results on the strong Gevrey hyperbolicity index have been obtained. In particular, for homogeneous hyperbolic differential operators of order m of which characteristic set is a smooth manifold, the Cauchy problem is Gevrey m/(m-2) well posed for any lower order term if the localization is strictly hyperbolic polynomial on the conormal space and the propagation cone is transverse to the characteristic manifold.
|
Report
(5 results)
Research Products
(17 results)